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1 Overview 
1.1 Introduction 
The ongoing APS Upgrade (APS-U) will replace the entire APS storage ring with a ring based on a reverse 
bend multi-bend achromat (MBA) lattice design. The new storage ring will increase the APS’s brilliance by 
factors of 100-1,000s depending on x-ray energy and make the APS the brightest hard x-ray synchrotron 
source in the world. Moreover, because of both ongoing developments at the APS in superconducting 
undulators and the fact that the APS is the highest energy storage ring in the western hemisphere, the APS-U 
will continue to be world-leading in high energy x-ray capabilities. A one-year shutdown is required for 
removal and replacement of the storage ring to achieve these revolutionary gains; the one-year shutdown 
period is scheduled to begin on April 17, 2023. This date provides context and a timeline for the ongoing and 
needed developments described below. 

As part of the APS-U project, feature beamlines were selected for new installation and/or complete 
replacement based on their promise to best exploit the capabilities of the new source, namely brightness, 
coherence and high energy x-rays. In addition, based on similar criteria, several beamlines were selected for 
major enhancements. Because of the greatly enhanced brightness, coherence, and signal at high x-ray energies 
along with new state-of-the-art high-bandwidth commercial detectors that are part of these projects and 
amplify these gains, the feature and enhanced beamlines require significant improvements in networking, 
controls and data acquisition, computing, workflow, data reduction, and analysis tools to operate effectively. 
For the most part, these needs are not part of the APS-U project but, instead, must be developed as part of APS 
Operations. The purpose of this document is to summarize the assembled needs, the plans in place to address 
these needs, and document remaining gaps and proposed next steps. 

All aspects of APS operation depend on computation, but data analysis software and beamline control and 
computing infrastructure are of particular importance for facility productivity. Demands for increased 
computing at the APS are driven by new scientific opportunities, which are enabled by new measurement 
techniques, technological advances in detectors, multi-modal data utilization, and advances in data analysis 
algorithms. The priority for the APS is to further improve our world-class programs that benefit most from 
high-energy, high-brightness, and coherent x-rays. All of these require advanced computing. The 
revolutionized high-energy synchrotron facility that APS-U will deliver will increase brightness and 
coherence, leading to further increases in data rates and experiment complexity, creating further demands for 
advanced scientific computation. 

Over the next decade, the APS anticipates a multiple-order-of-magnitude increase in data rates and volumes 
generated by APS instruments. This necessitates 10s of PFLOP/s of on-demand computing resources and 
increased data management and storage resources to process and retain this data and analyzed results. 
Advanced data processing and analysis methods will be required to keep up with the anticipated data rates and 
volumes and to provide real-time experiment steering capabilities. The key elements of this strategy and plan 
include: 

• Upgrading networking infrastructure within the APS and between the APS and the Argonne Leadership 
Computing Facility (ALCF) 

• Deploying state-of-the-art experiment control software at beamline instruments 
• Expanding the capabilities and use of common data management and workflow tools and science portals 
• Deploying sufficient local and edge computing resources, and utilizing the Argonne Leadership 

Computing Facility (ALCF) for large on-demand data processing and analysis tasks 
• Developing high-speed, highly parallel data processing and analysis software, and extensively applying 

novel mathematical and AI/ML methods to solve challenging data reduction and analysis problems 
• Collaborating with the BES light sources, the ASCR computing and networking facilities, the APS User 

community, and the larger DOE landscape 

The APS and ANL are poised well to employ advanced computing to maintain a world-leading position in the 
synchrotron community. The APS has a world-class photon science program with a large and diverse user 
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base, and ANL is home to world-leading supercomputing infrastructure and computer science expertise in the 
Computing, Environment, and Life Sciences directorate (CELS). This co-location provides an unprecedented 
opportunity for collaboration. 

The APS collaborates closely with the other BES light sources, and the ASCR computing and networking 
facilities and ASCR researchers. With the other BES light source facilities and ASCR computing and 
networking facilities, the APS co-developed a common vision for the future of computing at the light sources 
and for the light source user community. This common vision is a transformative computational fabric that 
covers the full lifecycle of data generated at the BES light Sources. It facilitates all aspects of the data lifecycle 
across the BES light sources, including theory, modeling and simulation, experiment design, data generation at 
the light sources, data reduction and processing, data analysis and interpretation, and publication and 
dissemination of scientific knowledge. In this vision the over 200 current and planned instruments at the light 
sources are seamlessly connected to a multi-tiered computing landscape that includes edge and local systems, 
laboratory and campus computing resources, the ASCR facilities, and sustainable and discoverable scientific 
data repositories. These capabilities will advance the science of the over 10,000 annual light source users. The 
APS and the other BES light source facilities have partnered with the ASCR computing and networking 
facilities to take steps toward realizing this shared vision. 

The APS has organized the core groups required to achieve these goals under the X-ray Science Technologies 
(XST) umbrella within the X-ray Science Division (XSD). The XSD Beamline Controls (BC) group is 
responsible for beamline data acquisition, through control and operations systems and software. The XSD 
Computational X-ray Science (CXS) group is mainly responsible for the development of theory, mathematical 
models, algorithms, and software for interpreting x-ray measurements. The XSD Scientific Software 
Engineering & Data Management (SDM) group is responsible for software engineering for data analysis 
applications and data management tools, enabling high-performance computing (HPC). The management and 
support of information technology resources within the APS is handled by the APS Engineering Support 
(AES) division Information Technology (IT) and Information Solutions (IS) groups. 

The outline of the rest of the document is as follows. The remaining sections provide a beamline-independent 
overview of plans for networking architecture & infrastructure (see 1.2), controls, data acquisition, and 
detector integration (see 1.3); data management, workflows, and science portals (see 1.4); computing 
infrastructure (see 1.5); data reduction and analysis (see 1.6); and effort funding and collaborations (see 1.7). 
Specific needs and plans for the APS-U feature beamlines are documented in 2. 

1.2 Network Architecture and Infrastructure 
As data rates and volumes continue to grow (see 1.4), greater demands will be placed on the APS network. 
This is especially true for the APS-U feature and enhanced beamlines. The APS is updating its network 
architecture and infrastructure to better serve the beamlines as it enters the APS-U Era. The APS Network 
Integration Team has been working over the past years to develop a network architecture and infrastructure 
plan and to implement that plan. Figure 1-1 depicts the APS-U Era network architecture and infrastructure 
plan. 

The center of the APS network consists of a pair of core switches (HPE Aruba 6410) located in the APS data 
center. These Tier 1 switches provide all routing to beamline subnets and to other parts of the APS, Argonne 
and the Internet via ESnet. The core switches are configured in a redundant active/active configuration. The 
core switches provide multiple 40/50/100 Gbps ports. These core switches are connected via 2 x 40 Gbps 
uplinks to the APS Tier 2 firewall, which in turn connects to the Argonne Tier 1 firewall with 2 x 100 Gbps 
uplinks. The Tier 1 Argonne firewall connects to the Internet via ESnet using 2 x 100 Gbps uplinks. The APS 
core switches also connect directly to the Argonne Leadership Computing Facility via 2 x 100 Gbps uplinks. 
The same core switches connect to the storage systems for the APS Data Management System (see 1.4), sector 
data storage systems, the dservs that host beamline control system configurations and software, and the APS 
accelerator network. 

Each sector at the APS has a Tier 2 switch (HPE Aruba 6410) that serves to connect beamline devices and to 
connect the beamline to the core APS switches. The Tier 2 switches connect to beamline computers, control 
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system EPICS IOCs, detectors and data acquisition servers, wireless access points, cameras, and controls 
hardware. Each Tier 2 beamline network switch will provide line rate 10/100/1000 Mbps ports for the majority 
of devices at the beamline, as well as high speed line rate 10/25/40/50/100 Gbps ports for data acquisition 
where needed. Uplinks to the APS Tier 1 core switches will be sized appropriately based on beamline needs. 

A Tier 3 managed switch with 48 x 10/100/1000 Mbps ports may be deployed at each experiment hutch for 
controls hardware stations to provide a dynamic cabling environment and to isolate beamline controls 
hardware traffic. 

The APS will adopt a Supervisory Control and Data Acquisition (SCADA) architecture for the APS-U 
beamline control system network. Controls and data analysis network traffic will be separated and isolated 
from outside networks for maximum performance and security. Wireless access points can also be provided 
inside the hutch to support, for instance, advanced sensors or augmented reality headsets. 

Each APS-U feature beamline will have a 10 Gbps copper cabling infrastructure (CAT 6A) from beamline 
stations to the sector network switch. An additional 96 pairs of single mode fiber are currently being installed 
from APS data center to each of the Laboratory Office Module (LOM) network closets; 768 pairs in total. This 
additional fiber infrastructure will provide sufficient network bandwidth from the beamlines to the data center 
for the next decade. 

The APS-U project scope is responsible for networking at the Tier 2 and Tier 3 levels for the APS-U feature 
beamlines, including the Tier 2 and Tier 3 switches and optics modules, and all cabling in the sector and 
hutches. APS Operations is responsible for Tier 2 and Tier 3 networking for all other beamlines. APS 
Operations is responsible for all networking from the Tier 2 sector switches to the Tier 1 core switches, and to 
other systems at the APS. Argonne Operations is responsible for networking from the APS Tier 1 switches to 
the Internet, and to the Argonne Leadership Computing Facility (ALCF). 

The upgraded Tier 1 core switches were installed in the spring of 2021. Each APS-U feature beamline network 
upgrade will follow the beamline upgrade schedule. Fiber optic cable upgrades have been completed from the 
APS data center to LOMs 435-438 and are scheduled to be completed to LOMs 431-434 by the end of 2021. 
Argonne’s central networking team is responsible for maintaining the network between the APS and the ALCF 
and to the Internet. Networking between the APS and ALCF will be upgraded to terabit/s. 



 
 

7 

 
Figure 1-1 The APS-U Era network architecture and infrastructure. 
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1.3 Controls, Data Acquisition, and Detector Integration 
The Beamline Controls (BC) Group will provide direct engineering, installation and commissioning support 
for APS-U beamline machine control, data acquisition and experimental process control systems. Maximizing 
system operability, maintainability and adaptability while providing state-of-the-art performance are the goal 
of all system engineering decisions.  
To achieve those goals for APS-U beamline controls engineering will rely on a standards-based approach, with 
a strong preference for open-source or commercial-off-the-shelf components, where possible. Unique controls 
capabilities are engineered in-house or in collaboration with a vendor with the goal of being adaptable to 
multiple beamline uses.  
The APS-U scope, a combination of new and rebuilt beamlines with significant improvements in data 
acquisition performance, requires a multi-tiered strategy for implementation of the control system. The BASE 
tier of beamline controls will apply to all APS-U beamline controls systems. This tier will receive the upgraded 
SCADA network layout, EPICS V7 capable IOCs, bluesky experimental control and data handling (when 
appropriate) and replace end-of-life hardware, as funding permits. Beamlines/hutches that are adding 
instruments that require additional control system functionality (ENHANCED tier) will have necessary 
components upgraded or systems added to meet performance goals. ADVANCED beamlines are ones that are 
completely rebuilt or built new. The design of ADVANCED tier beamline and instrument control systems will 
use updated standard motion and IO components that maximize beamline performance capability. 
Programmable motion systems that enable coordination motion across components and field programmable 
FPGA based triggering and data acquisition systems will be the key strategic components of the ADVANCED 
tier beamlines.  
ACSMotionControl motor controllers and drives have been selected as a standard APS-U motion solution. 
This motion system uses EtherCAT technology to coordinate motors across multiple devices. The MP4U 8-
axis controller/drive solution will be preferred but when needed other ACS products will be deployed. A VME 
based motion system (OMS MAXv/Phytron) will be available when high density/low duty cycle motors need 
to be supported.  

APS-U instrument fast fly scanning requirements will be met with an APS designed, user configurable, fast 
triggering/timing and data acquisition system, softGlueZynq. This system installs the EPICS framework on a 
commercial FPGA/ARM processor board, AVNET microZed. softGlueZynq provides pre-built, yet 
configurable, hardware circuits (gate/delay generators, frequency counters, multi-channel scaler) required for 
fast and precise experiments with APS-U Era instruments. The softGlueZynq focal spot tracking circuit, 
pixelTrigger, can generate data-acquisition triggers and record six interferometers and two additional channels 
(time tag and dwell time), at up to 400 kHz to meet APS-U microscope position accuracy requirements. See 
Figure 1-2. 

The hardware and software flexibility that the softGlueZynq system provides for developing APS-U Era 
instrument control and experiment solutions makes it the preferred platform over similar FPGA based 
solutions. The softGlueZynq system was presented at the 2019 APS Advanced Controls Workshop (sponsored 
by the APS Advanced Controls Working Group) and determined to be a sound solution for APS-U Era 
experiment needs. 

Networked industrial IO devices will be used for lower performance beamline IO needs (analog, digital, relays, 
thermocouples). LabJack and Advantech ADAM series products are examples of preferred networked IO 
solutions.  
EPICS is used as a layered control structure onto the beamline control systems. This layered approach enables 
specialized collaboration with instrument scientists and controls communities within the APS as well as at 
other DOE facilities and abroad. APS-U EPICS IOCs will support EPICS V7 PVAccess applications and 
clients as EPICS client/server solutions transition from Channel Access to PVAccess. Priority is placed on 
developing capabilities that capture and create economies of scale aligned with the priorities of XSD and the 
APS. 
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Each APS-U beamline project has been assigned a Controls Lead and Co-Lead from the XSD Beamline 
Controls group. These leads are the primary contact for the APS-U beamline project lead and coordinate with 
the APS-U beamline project lead on installation and commissioning planning and execution. The XSD 
Beamline Controls group meets regularly to share detailed planning efforts on the various feature beamlines to 
help ensure that the beamline controls designs are as uniform as sensibly possible. 

The high-level beamline controls planning and installation schedule in administered using project management 
best practices in accordance with APS-U project planning guidelines. Each planning and installation task has 
been assigned effort hours, duration hours, and labor resources required. Scheduling dependencies between 
tasks are tracked. Each major element of beamline controls (instrument control, motion systems, detectors, 
experimental software, i.e., bluesky, instrumentation network, system monitoring and control, and beam 
characterization) have a design, procurement, and installation phase that has been estimated and will be 
tracked. Each feature beamline controls work timeline has been determined separately based on the beamline 
enclose Beneficial Occupancy dates. 

 
Figure 1-2 Schematic of a fly-scanning experiment using the softGlueZynq FPGA pixelTrigger system to synchronize beam 
position data with detector images. 

1.4 Data Management, Workflows, and Science Portals 
The APS Data Management System, the facility-wide software and hardware system for managing data and 
workflows, provides a data management, workflow, and storage system sufficient to retain experimental data 
in accordance with sponsor requirements. 

The need for data management, workflow, and distribution tools, and data storage resources continues to grow. 
Currently the APS X-ray Science Division operates beamlines that collect on the order of 5 PB of raw data per 
year. Over the next decade, it is estimated that the data storage needs of the APS are anticipated to increase by 
at least two orders of magnitude to 100s of PBs of raw data per year (see Figure 1-3). Great strides have been 
made in this area over the past years. The APS will continue to deliver a multi-tiered data management and 
distribution system for all current and future APS beamlines. 

During FY13 - FY15, the APS piloted facility-wide data management and distribution tools and resources with 
effort and funding from LDRDs. These activities provided R&D effort and seeded ongoing connections 
between the APS and the Argonne Leadership Computing Facility (ALCF), the Mathematics and Computer 
Science (MCS) division, the Data Science and Learning (DSL) division, and the Globus Services team at the 
University of Chicago. 
Through APS operations funding, the APS Data Management System integrates with beamline data 
workflows, and large data storage systems. These tools automate the transfer of data between acquisition 
devices, computing resources, and data storage systems. Ownership and access permissions are granted to the 
users signed-up to perform a particular experiment. A metadata catalog allows beamline staff to populate 
experiment conditions and information for access via a web portal. Users can download data at their home 
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institutions using Globus Transfer (globus.org) or SFTP. At present, approximately 40 APS beamlines (XSD 
and non-XSD) take advantage of this system. 
Medium-term data storage is available within the APS; longer-term storage systems are provided by the 
Argonne Leadership Computing Facility (see Figure 1-4). Currently, the APS provides approximately 3.6 PB 
of central disk storage (easily expandable to 15 PB) for medium-term data retention, and several Data Transfer 
Nodes (DTNs) for reliable, high-speed data movement internally and externally (see Figure 1-5). The Argonne 
Leadership Computing Facility currently provides approximately 10 PB of tape storage (easily expandable to 
meet future APS needs) for longer-term data retention. The ALCF has recently deployed a 100 PB community 
file system (Eagle) and a 100 PB project file system (Grand) along with additional tape storage that is available 
for APS use. These resources are currently funded, and will continue to be funded, by APS and ALCF 
operations budgets. Both the National Energy Research Scientific Computing (NERSC) Center and the Oak 
Ridge Leadership Computing Facility (OLCF) are deploying similar systems. 
The APS is working with Argonne’s Data Science and Learning Division and the Globus Services team to 
develop a computational data fabric for end-to-end data lifecycle management. This fabric is named Gladier 
and connects and automates many stages of the data lifecycle from acquisition to processing to publication. 
Science web portals will allow APS users to view and download their data and reprocess their data on ALCF 
and other large-scale computing resources using Globus Automate and FuncX. The Materials Data Facility 
(MDF) and the DOE Office of Scientific and Technical Information will serve as a DOI generating service for 
APS datasets. The APS and Globus team have prototyped a computational fabric for XPCS (see Figure 1-6) 
and serial crystallography, and are working to develop such workflows for ptychography, High-Energy 
Diffraction Microscopy (HEDM), and Bragg Coherent Diffraction Imaging (BCDI) over the next two years. 
These tools will be applied at more beamlines in the years after and will serve as the basis for enabling 
searchable data catalogs and adopting FAIR data practices.. 

 
Figure 1-3 Log scale: Anticipated aggregate APS X-ray Science Division data generation per year. Data generation during FY23 
is estimated to be at 50% of the peak due to the beginning of the storage ring replacement period. Data generation during FY24 
is zero due to the storage ring replacement period and beginning of beamline commissioning. 

 
Figure 1-4 Storage available for APS beamlines. A multi-PB data storage system located at the APS serves medium-term needs. 
The Argonne Leadership Computing Facility (ALCF) provides multiple systems for long-term storage. Capacity will be expanded 
as needed to meet sponsor requirements. 
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Figure 1-5 The APS Data Management System storage infrastructure. A Data Direct Networks storage appliance connects to an 
InfiniBand switch. Four data transfer nodes link the storage to the beamline network, two data transfer nodes connect the 
storage to the Argonne Leadership Computing Facility, two data transfer nodes provide links to the public Internet for Globus 
transfers, and two data transfer nodes provide links to the public Internet for SFTP transfers. 

 
Figure 1-6 Automation used to perform on-demand analysis of XPCS data using computing resources at the Argonne Leadership 
Computing Facility (ALCF). Data are transferred to ALCF where compute nodes are provisioned to perform analysis, extract 
metadata, and plot results, which are then published to a Globus data portal for user analysis and reprocessing. 
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1.5 Computing Infrastructure 
Demands for increased data processing capabilities in the APS-U era are driven by new scientific opportunities 
enabled by the upgraded facility. The increase in brightness and advances in detector data rates will generate 
multiple orders-of-magnitude more data than is generated today; this increase in data volume necessitates an 
increase in processing power to keep pace. The utilization of multi-modal data to answer new questions 
requires more complex and sophisticated data processing algorithms requiring increases in computing 
capabilities. Increases in computing power are needed by advanced algorithms for existing techniques that, for 
example, provide higher-fidelity results, and to train AI/ML models. The need for real-time analysis and 
feedback to make crucial experiment decisions and enable autonomous experiment steering also requires more 
computing cycles than have been traditionally utilized. 
As with data storage, the computing resources required by the APS are anticipated to grow by at least two 
orders-of-magnitude. Prior to the APS-U, most data processing can be performed within the range of TFLOP/s 
of computing resources. In the APS-U era, first pass data processing at the APS will require on-demand access 
to tens of PFLOP/s of computing resources. There is wide variability in the computational requirements among 
techniques and processing approaches with those instruments and techniques that benefit most from high-
energy, high-brightness, and coherent x-rays driving most requirements [1]. 

The APS-U project may provide funding for certain local computing resources at feature beamlines, however, 
the majority of resources and effort will be provided outside of APS-U project scope. To satisfy these needs, 
the APS adopts a graded approach to resource utilization. Small-scale resources, such as multi-core processors 
and GPUs, local to beamlines will be used when sufficient. For moderate computational needs, the APS 
maintains an on-site computing cluster, and ANL maintains computing resources as a part of the Laboratory 
Computing Resource Center (LCRC). For the most demanding computational problems, large-scale computing 
facilities must be used, including the Argonne Leadership Computing Facility (ALCF), the National Energy 
Research Scientific Computing (NERSC) Center, and the Oak Ridge Leadership Computing Facility (OLCF). 
To mitigate challenges surrounding processing and storing such large, anticipated data volumes, the APS is 
exploring the utilization of edge computing resources coupled closely to detectors and instruments, to run 
AI/ML data reduction algorithms. See Figure 1-7 for a list of computing resources available at Argonne. 

Integrated ALCF Supercomputing Resources at the APS: A New Era of APS Computing 

In the APS-U era, it will be impractical and unreasonable to support the scale of computing required with only 
local APS resources. The colocation of the APS and world-leading supercomputing infrastructure at the ALCF 
on Argonne’s campus provides an unprecedented opportunity for collaboration. The APS and ALCF have 
partnered to deliver a new model of computing, tightly coupling APS experiment instruments with ALCF 
supercomputers, to accelerate scientific discovery. See Figure 1-8. 

The ALCF is deploying a new computing system, Polaris, in 2021. First use of the system is planned for late 
2021 / early 2022. Polaris will be a combination commodity CPU/GPU system with performance of 
approximately 44 PFLOP/s. This system follows a new model for supercomputing systems, Instrument to Edge 
(I2E), to better enable use by experimental facilities. Up to 4 PFLOP/s of computing will be prioritized to 
explore on-demand use of high-end computing resources by experimental and observational facilities, 
including the APS. 

Work is underway to test preemptive scheduling queues to provide immediate, on-demand access for APS 
jobs. Gateway nodes on this system will provide the ability for the APS to stream data directly to Polaris from 
detectors, avoiding local file I/O. The APS is working with Argonne’s Data Science and Learning Division and 
the Globus Services team to develop a computational data fabric for end-to-end data lifecycle management, 
Gladier (see 1.4 above). A combined team of APS and ALCF scientists and engineers are developing end-to-
end workflow pipelines that will connect APS instruments to this new resource, focusing first on 
ptychography, high-energy diffraction microscopy, and AI/ML methods. 

These new capabilities combined will provide the necessary coupling between the APS and the ALCF to more 
seamlessly utilize large computing resources to enable the data processing needed in the APS-U era. This 
model, once refined using Polaris, will be deployed on more computing resources at the ALCF and at 



 
 

13 

Argonne. These capabilities will be deployed for many other APS techniques and beamlines for data 
processing during beam time and for post-processing by APS Users after allocated experiment time is over. 

Designed in collaboration with Intel and Cray, the 11 PFLOPS Theta supercomputer serves as a stepping-stone 
to the ALCF's next leadership-class supercomputer, the Aurora exascale supercomputer, to become available 
in 2022. Aurora is designed to support numerical simulation, data analysis, and deep learning applications. To 
this end, it is architected with a mix of Intel CPUs and GPUs to deliver sustained performance of greater than 
one exaflop/s 1018 full-precision floating point operations per second, and substantially higher compute rates at 
reduced precision. It will have aggregate system memory of more than 10 petabytes. The APS will utilize this 
new class of supercomputer to couple the results of simulations and modeling with experiment data and train 
ML models in real-time. 

The APS is developing software applications that run on the ALCF Theta (and ThetaGPU) supercomputer for 
high-energy diffraction microscopy (HEDM), ptychography, serial crystallography (SX), tomography, x-ray 
fluorescence microscopy (XRF) elemental mapping, and x-ray photon correlation spectroscopy (XPCS). These 
applications are being ported to run on GPUs and to scale for the upcoming Polaris system. 

The APS has been involved in many activities aimed at using centralized and large-scale computing resources. 
Notable activities include: 

• ALCF researchers demonstrated the use of the Balsam resource and queue scheduler to run XPCS and 
serial crystallography (SX) processing jobs in an on-demand fashion [2]. 

• At SC’19, ALCF researchers demonstrated large-scale real-time reconstruction and visualization of 
tomography data. Data acquisition was simulated at the convention center and streamed to Theta at the 
ALCF for denoising and reconstruction. Data was visualized back on the show floor. This demonstration 
won the first annual SCinet Technology Challenge (TC) [3]. See Figure 1-9. 

• Argonne scientists have demonstrated tomographic reconstructions of a fixed adult mouse brain specimen 
consisting of 1012 voxels in 2.5 minutes using 24,576 GPUs on the Summit Supercomputer reaching 65 
PFLOPS throughput [4]. This work won the SC’20 Best Paper Award. 

• The APS has successfully utilized NERSC for high-energy diffraction microscopy (HEDM), tomography, 
and x-ray photon correlation spectroscopy (XPCS) data processing. 

• The Argonne Leadership Computing Resource Center (LCRC) has been used routinely for high-energy 
diffraction microscopy (HEDM) reconstructions. 

Edge computing offers the ability to process data quickly on or near detectors and experiment instrumentation 
without the need to first transfer all data to high-end computing resources. This is particularly promising for 
handling large data when coupled with machine-learning methods. Using only a subset of data, machine-
learning models may be trained on supercomputers. The trained model is then run using edge computing 
devices to process newly acquired data, providing fast feedback for experiment steering. See Figure 1-10. For 
example, APS and Argonne researchers have developed deep neural networks that perform ptychography 
reconstructions 300 times faster than the conventional iterative approaches and require up to 5 times less data 
[5], and 200 times faster than the conventional pseudo-Voigt profiling to locate Bragg peak positions [6]. 
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Figure 1-7 Computing resources and respective specifications and performance available for use by the APS at Argonne. 
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Figure 1-8 The APS and ALCF have partnered to deliver a new model of computing, tightly coupling APS experiment 
instruments with ALCF supercomputers and storage infrastructure, to accelerate scientific discovery. 

 
Figure 1-9 Demonstration setup for “Real-Time Analysis of Streaming Synchrotron Data” at SC’19. 

 
Figure 1-10 Edge computing architecture using machine-learning models trained on supercomputers. 
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1.6 Data Reduction and Analysis 
The APS is focusing data analysis algorithm and software development in the areas needed to answer the novel 
scientific inquiries enabled by the future APS and the APS-U project. These areas are techniques driven by 
coherence, imaging, and high-energy, as well as multi-modal techniques. Algorithms and software are being 
developed to analyze and reconstruct massive data volumes, bridge across length and time scales, identify and 
classify features and patterns, and provide feedback to experiments dynamically using real-time reduction and 
novel AI/ML approaches. Detailed descriptions and plans for algorithm and software development for each 
APS-U feature beamline, including funding sources and collaborative efforts, may be found in each APS-U 
feature beamline’s area in section 2. 

Coherence, imaging, high-energy, and multi-modal techniques are already the most computationally intensive 
techniques performed at the APS and throughput demands are expected to grow by as much as multiple orders 
of magnitude due to improved detectors and the upgraded source. Data reduction and analysis will rely heavily 
on the use of high-performance computing (HPC), utilizing appropriate technologies such as multi-threading, 
General Purpose Graphical Processing Units (GPUs), edge devices, and distributed computing environments to 
obtain results with near real-time completion, so that results enable user-driven or even automated steering of 
experiments. 

Most software will be developed as open source and will be made available with user community code 
contributions encouraged. A graded approach according to impact and priority will be applied to development. 
Packaging and active support either as distributable applications or as Software-as-a-Service (SaaS) will be 
provided for software systems that have been deemed to be most important for the success of APS users. 
Beamlines not directly part of APS-U will also benefit from the reuse of tools developed for priority 
applications. 

Key software developments have been made in this area over the past years. Applications will continue to be 
developed for improved performance and algorithms. A complete list of software produced at the APS can be 
found at https://www.aps.anl.gov/Science/Scientific-Software. 
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New efforts are underway to address the development of new algorithms and HPC software for multi-modal 
analysis, including fluorescence tomography, fluorescence ptychography, tomography diffraction, and Bragg 
CDI and ptychography, and for a new approach to Laue diffraction reconstructions. Computer vision 
approaches are being developed to speed up beamline calibration and sample alignment. The MONA 
(Monitoring, Optimization, Navigation, Adaptation) project has prototyped data streaming coupled with real-
time data analysis and automated feedback. 

Artificial Intelligence / Machine Learning (AI/ML) 

The development of new x-ray characterization techniques has notably relied on the co-invention of algorithms 
and mathematical models for the analysis and interpretation of the data produced by each technique. In fact, 
several synchrotron imaging techniques are only made possible because of the existence of an underlying 
algorithm or computational solver (for example, computational imaging methods, such as ptychography and 
tomography). Numerical algorithms have enabled transformational science at synchrotron sources, but next-
generation light sources provide an enormous computational challenge for many existing algorithmic 
approaches. APS-U Era data rates are expected to be so large that traditional algorithms may not be able to 
keep up with acquired data. Artificial intelligence / machine learning (AI/ML) advances have shown promise 
in not only speeding up but also expanding the potential robustness of x-ray data analysis methods and is 
poised to play an increasing role in the APS-U Era. 

Key AI/ML advances have been made over the past few years. Some examples are: 

• A.I. C.D.I. – AI-enabled real-time Bragg Coherent Diffraction Imaging: A deep convolutional neural 
network (CDINN) can reconstruct high-quality images from CDI data quickly by skipping the phase-
recovery step. Such real-time image reconstruction has the potential to dramatically improve the various 
advanced imaging modalities that rely on phase-retrieval algorithms. [1] 

• Automatic Differentiation for beyond Depth of Focus: As Argonne’s APS Upgrade enables higher-
resolution imaging, researchers must account for diffractive blurring in the image of the thick samples that 
x-rays will be able to image. This method computes the gradient values using automatic differentiation 
(AD). Because AD is used for neural network training, it is part of many AI toolkits that are already built 
for large-scale data handling on supercomputers. A detailed comparison of the forward model approaches 
(Fresnel multislice versus finite-difference methods) shows that the AD-based approach can be used to 
recover beyond-DOF objects. [2] 

• BraggNN: BraggNN is a deep-learning-based method that can determine Bragg peak positions much more 
rapidly than conventional pseudo-Voigt peak fitting. BraggNN runs more than 200 times faster than a 
conventional method on a GPU card with out-of-the-box software. The speedup is important for high-
resolution, high-throughput, and latency-sensitive applications, moving the field closer to realizing real-
time analysis and experiment steering for materials exploration and discovery. [3] 

• Low-Dose X-ray Tomography with Self-supervised Learning: A neural network that learns through 
optimization of the differences between a few low-dose/high-dose pairs. Using this map, convolutional 
neural network (CNN) can enhance the remaining low-dose projections, thereby allowing the imaging of 
dose-sensitive materials at the nanoscale. [4] 

• ML Interatomic Potentials from X-ray Diffraction Data: A new machine learning scheme uses 
experimental high energy x-ray diffraction data to drive an active learning algorithm that tests ab initio 
molecular dynamics simulations using a Gaussian Approximation Potential approach. The interatomic 
potential developed reproduces the measured structural phases and predicts dynamic and physical 
properties of the system. [5] 

• ML Potentials for Molten Salts from X-ray PDF data: A machine learning approach driven by x-ray pair 
distribution function data uses an active learning algorithm to test ab initio molecular dynamics 
simulations using a Gaussian Approximation Potential. The ML potential developed reproduces the 
temperature-dependent molten salt structure and predicts the density, self-diffusion coefficients and ionic 
conductivity of the liquid. [6] 

• PtychoNN – AI-enabled scanning coherent diffraction imaging: PtychoNN is a deep convolutional neural 
network that learns to solve the image reconstruction problem in Ptychographic x-ray imaging. PtychoNN 
learns a direct mapping from measured diffraction data to sample amplitude and phase, eliminating the 



 
 
18 

need for iterative phase retrieval entirely. PtychoNN is 100s of times faster than current methods that use 
phase retrieval algorithms, and it can reconstruct sample images with up to 5x less data than that required 
by current methods. [7] 

• TomoGAN – Low-Dose Synchrotron X-Ray Tomography with Generative Adversarial Networks: A 
denoising technique based on generative adversarial networks, for improving the quality of reconstructed 
images for low-dose imaging conditions. Evaluation with both simulated and experimental datasets shows 
that this approach can significantly reduce noise in reconstructed images, improving the structural 
similarity score of simulation and experimental data. [8] 

Work continues to develop and apply new AI/ML methods. With recent funding from the DOE for Artificial 
Intelligence and Machine Learning at DOE Scientific User Facilities (see 1.7), the APS is collaborating on 
AI/ML tools for spectroscopy data analysis, a digital twin for in silico time-resolved experiments, high-energy 
diffraction microscopy data reduction, accelerator tuning and optimization, and sharing and cataloging ML 
models and data. See https://www.anl.gov/ai for a full list of AI/ML developments. 
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1.7 Effort, Funding, and Collaborations 
Effort 

The majority of effort required under this strategy will be carried out by the core groups under the X-ray 
Science Technologies (XST) umbrella within the X-ray Science Division (XSD). The XSD Beamline Controls 
(BC) group is responsible for beamline data acquisition, through control and operations systems and software. 
The XSD Computational X-ray Science (CXS) group is mainly responsible for the development of theory, 
mathematical models, and algorithms and software for interpreting x-ray measurements. The XSD Scientific 
Software Engineering & Data Management (SDM) group is responsible for software engineering for data 
analysis applications and data management tools, enabling high-performance computing (HPC). Effort for the 
management and support of information technology resources within the APS is handled by the APS 
Engineering Support (AES) division Information Technology (IT) and Information Solutions (IS) groups. APS 
Operations funding supports most of the effort in these groups. 
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Funding 

The APS-U project provides funding for networking infrastructure within the APS-U feature beamlines. 
Controls systems for the APS-U feature beamlines are also supported by the APS-U project. The APS-U 
project may provide funding for certain local computing resources at APS-U feature beamlines but the 
majority of resources and effort are outside of APS-U project scope. 

One way Argonne National Laboratory supports computational efforts at the APS is via Laboratory Directed 
Research & Development Funding (LDRD) funding. Beginning in FY11, the Tao of Fusion LDRD helped 
seed the TomoPy application and the APS Data Management System; likewise, the FY13 Next Generation 
Data Exploration: Intelligence in Data Analysis, Visualization and Mining LDRD was aimed at multi-modal 
analysis. Other previously funded LDRDs include Visualization and Mining, Modeling, Analysis, and Ultrafast 
Imaging (MAUI), Multimodal Imaging of Materials for Energy Storage (MIMES), Enabling Nanometer-scale 
X-ray Fluorescence Tomography, and Coherent Surface Scattering Imaging. 

Recently funded LDRDs of direct benefit to the APS in the computing space include: 

• FY17 A Universal Data Analytics Platform for Science 
• FY17 COHED: Coherence for High-Energy Diffraction 
• FY17 Developing Advanced Coherent Surface Scattering Reconstruction Method Incorporating 

Dynamical Scattering Theory 
• FY17 Enabling Multidimensional X-ray Nano-Tomography 
• FY17 The Perfect Thermodynamics of Imperfect Materials 
• FY18 A.I. C.D.I.: Atomistically Informed Coherent Diffraction Imaging 
• FY18 Integrated Approach to Unravel Four Dimensional Spatiotemporal Correlation in Highly Transient 

Phenomena: Ultrafast X-ray Imaging and High-Performance Computing 
• FY18 Novel Capabilities for Ultra-fast and Ultra-low-dose 3D Scanning Hard X-ray Microscopy 
• FY19 Enabling Automatic Learning of Atmospheric Particles through APS-U 
• FY19 Finding Critical Processes of Deformation in Structural Materials with Artificial Intelligence 
• FY19 Learning and Differentiating: Using Artificial Intelligence to Image Beyond the X-ray Depth of 

Focus Limit 
• FY19 Machine Learning Enabled Advanced X-ray Spectroscopy in the APS-U Era 
• FY20 Machine Learning Methods for Spectral Data from X-ray Transition Edge Sensor Arrays 
• FY20 Coded Apertures for Depth Resolved Diffraction 
• FY20 Intelligent Ptychography Scan via Diffraction-Based Machine Learning 
• FY20 AI-steer: AI-driven online steering of light source experiments 
• FY20 AI patterns for executable end-to-end biological programming experiments 
• FY20 Innovate High-Energy X-ray Diffraction and Machine Learning Driven Molecular Dynamics 

Simulation Study of Molten Chloride Salts 
• FY21 AutoPtycho: Autonomous, Sparse-sampled Ptychographic Imaging  
• FY21 Scalable DL-based 3D X-ray nanoscale imaging enabled by AI accelerators 
• FY21 ALCF Expedition Scalable DL-based 3D X-ray Nanoscale Imaging Enabled by AI Accelerators 

The APS has received funding and personnel support from the Argonne Leadership Computing Facility 
(ALCF) Data Sciences Program (ADSP): 

• Large-Scale Computing and Visualization on the Connectomes of the Brain 
• Developing High-Fidelity Dynamic and Ultrafast X-ray Imaging Tools for APS-Upgrade 
• X-ray Microscopy of Extended 3D Objects: Scaling Towards the Future, and Dynamic Compressed 

Sensing for Real-Time Tomographic Reconstruction 
• Dynamic Compressed Sensing for Real-Time Tomographic Reconstruction 

The NERSC Exascale Science Applications Program supported the APS on the Optimization of data-intensive 
tomography workflows at light sources project. 
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The APS receives funding for AI/ML efforts in part from collaborative awards from the DOE for Artificial 
Intelligence and Machine Learning at DOE Scientific User Facilities, Lab 20-2261: 

• A Collaborative Machine Learning Platform for Scientific Discovery, Principal Investigator (PI) - Alex 
Hexemer (Advanced Light Source, Lawrence Berkeley National Laboratory [LBNL]), Subramanian 
Sankaranarayanan (CNM-Argonne), Nicholas Schwarz (APS-Argonne) 

• A Digital Twin for In Silico Time-resolved Experiments, PI - Subramanian Sankaranarayanan (CNM-
Argonne), Maria Chan (CNM-Argonne), Mathew Cherukara (APS-Argonne), Pierre Darancet (CNM-
Argonne), Ross Harder (APS-Argonne), Haidan Wen (APS-Argonne), Jianguo Wen (CNM-Argonne) 

• Actionable Information from Sensor to Data Center, PI - Jana Thayer (Linac Coherent Light Source, 
SLAC National Accelerator Laboratory), Ian Foster, Zhengchun Liu (DSL-Argonne), Peter Kenesei, 
Antonino Miceli, Nicholas Schwarz (APS-Argonne)  

• Machine Learning for Autonomous Control of Accelerators, PI - Daniel Ratner (SLAC National 
Accelerator Laboratory), Xiaobiao Huang (APS-Argonne) 

• Integrated Platform for Multimodal Data Capture, Exploration and Discovery Driven by AI Tools, PI - 
Eli Stavitski (National Synchrotron Light Source-II, Brookhaven National Laboratory) Chengjun Sun, 
Steve Heald, Nicholas Schwarz (APS-Argonne) Maria Chan (CNM-Argonne) 

Collaborations 

Collaborations play a key role in the computing strategy for the APS. The APS actively collaborates with other 
facilities and organizations, and members of the APS User community to develop data analysis algorithms and 
software. As examples, most Argonne-funded LDRDs in this area involve collaborators from Argonne’s 
Mathematics and Computer Science Division, Computational Science Division, or Data Science and Learning 
Division. Select APS User groups have contributed greatly to analysis algorithms and software. 

The Center for Advanced Mathematics for Energy Research Applications (CAMERA) at Lawrence Berkeley 
National Laboratory aids in the development of software, modeling, and mathematics. For example, CAMERA 
helped develop GISAXS algorithms and tools, and the SHARP ptychographic reconstruction package. Most 
recently CAMERA has been involved in the development of the XPCS-Eigen correlation application for XPCS 
and in the application of the Multi-Tiered Iterative Phasing (M-TIP) algorithm for the reconstruction of 
Coherent Surface Scattering Imaging (CSSI) data. APS staff and researchers participate regularly in annual 
workshops for tomography, ptychography, and XPCS organized by CAMERA. 

Innovative APS applications, improved Globus-based data management and transfer capabilities, and the 
Gladier software has benefited, and continues to benefit, from ASCR support to Argonne research projects, 
such as RAMSES: Robust Analytical Models for Science at Extreme Scales and Braid: Data Flow Automation 
for Scalable and FAIR Science. Effort for CDI ptychography was initially funded by ASCR and now via the 
Intelligence Advanced Research Projects Activity (IARPA) and Northwestern University. Early efforts for the 
MIDAS software for High-Energy Diffraction Microscopy (HEDM) data processing were funded by APS 
industrial partners. The APS and the National Synchrotron Light Source II (NSLS-II) at Brookhaven National 
Laboratory (BNL) have developed a comprehensive computing collaboration plan so as to best utilize our 
scare resources, especially related to expanding bluesky use at the APS. Work on support for multi- and 
distributed-GPU N-dimensional complex FFTs is supported by NVIDIA and the Argonne Leadership 
Computing Facility (ALCF). 

The APS has been involved in the NOBUGS conference community and maintains active participation in the 
series of hack-a-thons organized by the Experimental Facilities Computing (ExFaC) Working Group. 

Researchers at the APS and Argonne’s Data Science and Learning Division co-organize the annual Workshops 
on Large-scale Experiment-in-the-Loop Computing (XLOOP) at SC. This workshop focuses on the 
intersection of large-scale experimental science from user facilities, such as the APS, with high-performance 
computing. A peer review process led by the workshop’s program committee selects manuscripts for 
presentation. Accepted manuscripts are published by the IEEE Computer Society Technical Consortium on 
High Performance Computing (TCHPC). The program committee selects the recipient of the best paper award, 
and the workshop attendees selects the recipient of the best presentation award. The novel work presented 
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during at this workshop will help the APS develop solutions critical to handling massive amounts of data 
generated during the APS-U era. 

The APS and the computing divisions within Argonne’s Computing, Environment, and Life Sciences (CELS) 
directorate hosted a series of town hall meetings in December 2020. Over 150 attendees participated from 
across Argonne. The goal is to develop a common vision for the future of APS computing within Argonne. 
Breakout sessions focused on new algorithm, math, and AI/ML, scalable software tools, workflow and 
orchestration, computing architecture, sustainable and discoverable data repositories, and networking. 

The X-ray Science Division has organized the APS Scientific Computation Seminar Series since 2015. This 
seminar series focuses on scientific computation for APS experiments. The series focuses on advanced 
software and computing infrastructure for analysis, reduction, reconstruction, and simulation. It provides an 
opportunity to learn about state-of-the-art computational techniques and tools and how they are being applied 
to science at the APS. 

In 2017, the directors of the 5 BES funded light sources chartered the Light Source Data & Computing 
Steering Committee (previously the Data Working Group). The role of the committee is to develop and 
maintain, with input from the directors of the BES light sources, a strategic plan in computing and data. This is 
defined to include data acquisition, analysis, visualization and management, and the associated hardware and 
software infrastructure. The committee also advises and assists the directors in the coordination and execution 
of work in this area, consistent with that strategic plan, and is responsible for reporting and responding to 
charges, achieving consensus on paths forward, coordinating proposal submissions, and tracking funded 
activities. 

The Light Source Data & Computing Steering Committee has developed a common vision for computing 
across the light sources, the Distributed Infrastructure for Scientific Computing for User Science (DISCUS), 
and a decade long roadmap to achieve the vision. This vision proposes a transformative computational fabric 
that covers the full lifecycle of data generated at the BES Light Sources to accelerate discovery and insight. 
See Figure 1-11. 

 
Figure 1-11 The Distributed Infrastructure for Scientific Computing for User Science (DISCUS) vision for computing at the light 
sources. 

In 2019, the directors of the five BES funded light sources and the directors of the 4 ASCR computing and 
networking facilities charted the BES Light Source and ASCR Computing Facilities Directors’ Data Working 
Group tasked with identifying how the ASCR facilities can help meet the needs of the BES facilities regarding 
data and computing. Membership is from the US DOE light sources and the US DOE supercomputing and 
networking facilities, and observers from the US neutron sources and Nano Science Research Centers 
(NSRCs) (ALS, APS, LCLS, MF, NSLS-II, SNS, SSRL, ALCF, ESnet, NERSC, and OLCF). The working 
group has formulated a plan for the desired data management architecture across the facilities, identified gaps 
in current planning, suggested a balance of responsibilities among the facilities, suggested next steps, and has 

The Vision: Transparent, remote access to facilities from proposal 
submission to data acquisition to data interpretation to publication
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undertaken pilot activities to utilize ASCR computing and networking facilities for processing and storing light 
source data. See Figure 1-12. 

 
Figure 1-12 The BES-ASCR Facilities Information Exchange held at Lawrence Berkeley National Laboratory on June 12, 2019 
established a working group across the BES light sources and the ASCR facilities. 

The BES Data Solutions Task Force Pilot Project (see Figure 1-13) is a 2-year pilot project to develop 
common software for data acquisition, management, and analysis across the five BES light sources (ALS, 
APS, LCLS, NSLS-II, SSRL). The project aims at creating a synergistic approach to software where the five 
light sources work as a team to deliver common solutions across the facilities. This is being achieved by 
leveraging tools and expertise from all the BES light sources and integrating complementary components, 
including bluesky from NSLS-II, Xi-Cam from CAMERA and ALS, and XPCS-Eigen and TomoPy, high-
performance data processing software, from the APS. The project is focusing on X-ray Photon Correlation 
Spectroscopy (XPCS), ptychography, and tomography beamlines across the facilities. At the APS, bluesky and 
Xi-Cam were successfully deployed at the 8-ID XPCS beamline. 

 
Figure 1-13 BES Data Solutions Task Force Pilot Project kick-off meeting held August 8-9, 2019 at NSLS-II/BNL. 
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2 APS-U Feature Beamlines 
Table 2-1 Summary of APS-U feature beamlines. 

Feature Beamline Synopsis 
ATOMIC Uses the enhanced coherence of the APS-U x-ray beam for high-resolution studies of the 

structural, chemical, and physical properties exhibited by advanced functional materials by 
acquiring atomistic structural information across many length scales in full three-
dimensional detail. 

Coherent High-Energy X-rays (CHEX) Use coherent x-ray techniques to advance the frontier for in situ, real-time studies of 
advanced materials synthesis and chemical transformations in natural operating 
environments, employing condensed-matter physics and environmental science. 

Coherent Surface-Scattering Imaging (CSSI) Combines a surface X-ray probe using novel coherent scattering methods with state-of-the-
art X-ray optics and detectors to study a range of materials surface and interface 
phenomena. 

High-Energy X-ray Microscope (HEXM) Investigates structure and evolution within bulk materials, often in extreme environments, 
with the established high-energy X-ray scattering techniques and novel coherence-based 
techniques enabled by APS-U. 

In Situ Nanoprobe (ISN) An x-ray nanoprobe designed to have a relatively large optical working distance enabling 
investigation of complex functional materials and materials systems such as catalysts, 
batteries, photovoltaic systems, and nanoscale Earth and environmental samples, during 
synthesis, operation, and under actual environmental conditions. 

Polarization Modulation Spectroscopy (Polar) Generates photon beams with highly tunable and modulated polarization states for imaging 
electronic and magnetic inhomogeneity in quantum materials with ~ 50 nm resolution as 
well as discovery of novel electronic states of matter at extreme pressure conditions (P < 7 
Mbar). 

PtychoProbe Realizes the highest possible spatial-resolution X-ray microscopy both for structural and 
chemical information, with the goals of focusing an X-ray beam to a 5-nanometer spot and 
ultra-fast scanning of the beam across the sample being studied. 

X-ray Photon Correlation Spectroscopy Advances studies in physics and materials science and engineering including dynamic 
heterogeneity, structural dynamics in super-cooled liquids, and fluctuations associated with 
competing mesoscale interactions in emergent materials. 

3D Micro and Nano (3DMN) Diffraction Addresses a wide range of problems in materials science, physics, and geoscience by 
providing small, intense X-ray spots (between 50 and 200 nanometers) to investigate spatial 
variations and correlations of strain and structure that define a wide range of scientifically 
and technologically important materials. 

 

2.1 ATOMIC APS-U Feature Beamline 
2.1.1 Summary 
The ATOMIC APS-U feature beamline will be dedicated to coherent x-ray diffraction imaging experiments for 
a diverse scientific community; experiments will exploit the brilliance of the upgraded source to study 
fundamental materials structures. 

In the APS-U era, the ATOMIC APS-U feature beamline will perform Bragg CDI acquisitions in two modes: 
fast and high-resolution. Table 2-2 shows estimated data generation rates at the ATOMIC APS-U feature 
beamline, and current data rates at the 34-ID-C instrument, for comparison. The ATOMIC APS-U feature 
beamline is anticipated to collect approximately 250 to 300 TB of raw data per year, in comparison to 
approximately 0.65 TB of data collected today at the 34-ID-C Bragg CDI instrument. This represents a nearly 
400x increase in data. These data generation estimates form the basis for networking infrastructure, controls, 
data management, and data processing planning. 
Table 2-2 Data generation rates today at the 34-ID-C Bragg CDI instrument (for comparison) and estimated data generation 
rates at the ATOMIC APS-U feature beamline. 
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Today Bragg CDI ASI Si Timepix, 
ASI GaAs Timepix+++ 

0.25 0.2 0.05 80% 60 3.38 90% 0.65 

APS-U 
Era 

Fast Bragg 
CDI 

TBD 1.00 20.0 20.00 80% 500 1,350.00 80% 220 

High-
Resolution 
CDI 

TBD 61.22 0.2 12.24 80% > 6,000 826.47 20% 35 

* The collection rate is high, but the frames are combined and written at a lower rate. 
** Based on 1,440 minutes in one day. 
+ The data set sizes are approximate and representative of typical experiments, as this value varies. 
++ Based on 210 days of beam time per fiscal year. 
+++ The number of pixels for ASI Si Timepix is 65,536 and ASI GaAs Timepix is 262,144, however the frame size is typically cropped. 

2.1.2 Network Architecture and Infrastructure 
Network infrastructure needs will be addressed by the facility plan described in 1.2. 

2.1.3 Controls, Data Acquisition, and Detector Integration 
Controls, data acquisition, and detector integration needs will be addressed by the facility plan described in 
1.3. Detailed plans and schedules are described in respective APS-U beamline controls documents, Equipment 
Specification Documents (ESDs), and Instrument Specification Documents (ISDs). 

2.1.4 Data Management, Workflows, and Science Portals 
The APS-U ATOMIC feature beamline will leverage the data management, workflow, and science portal 
efforts described in 1.4. The APS Data Management System, the facility-wide software and hardware system 
for managing data and workflows, will integrate data collection and processing workflows, manage user 
permissions based on experiment groups, and enable user access to data. Globus tools will provide a science 
portal for viewing and accessing data and automating the re-processing of data after the allotted experiment 
time has ended. For the ATOMIC APS-U feature beamline, workflows will provide a pipeline to automatically 
run tools to remove artifacts from data, reconstruct Bragg CDI data set, and view results. 

2.1.5 Computing Infrastructure 
Computing infrastructure needs will be addressed by the facility plan described in 1.5. Some local computing 
resources will be provided for on-the-fly data processing and experiment steering. Computing capacity for 
larger data processing tasks and for post-experiment processing and analysis will be provided by computing 
centers, including the Argonne Leadership Computing Facility (ALCF) and Argonne’s Laboratory Computing 
Resource Center (LCRC). The APS Data Management System and Globus tools will be used to seamlessly 
integrate these resources. 

2.1.6 Data Reduction and Analysis 
The preliminary step is finding diffraction peaks from a crystal sample. This is accomplished by using the 
micro-diffraction technique and analyzing the captured data with the LaueGo software package. The data 
collected during this phase is only used to find the coordinates to guide the sample stage during data 
acquisition and is not retained. 

The APS develops and supports the cohere software package for Bragg CDI data. The software is available as 
an open-source package (https://github.com/AdvancedPhotonSource/cohere). The package performs routine 
data correction, formatting, reconstruction, and visualization for Bragg CDI data. cohere currently implements 
conventional phase retrieval algorithms. It is written in Python and uses the ArrayFire package for data 
processing on CPUs and GPUs. Work is underway to add additional backend library choices so that ArrayFire 
can be replaced with CuPy or NumPy for easier distribution and deployment at computing centers. 

The current feature set and performance of cohere is adequate for most of today’s needs. However, the 
estimated approximate 400-fold increase in overall data that will be generated at the ATOMIC APS-U feature 
beamline, and the increase in size of individual datasets necessitates improvements and advances in software 
and algorithms. 
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The APS is currently developing higher-performance implementations of conventional phase retrieval 
algorithms and exploring novel AI/ML methods that may replace computationally complex phase retrieval 
methods. Table 2-3summarizes Bragg CDI data reduction needs, approaches, and status for the ATOMIC 
APS-U feature beamline. 

The APS is optimizing implementations of conventional phase retrieval algorithms in cohere for better 
performance. In order to process data quickly in the APS-U era using conventional phase retrieval approaches, 
the APS is developing distributed-memory CPU and multi-GPU implementations of presently utilized 
algorithm. N-dimensional complex FFTs are at the core of conventional phase retrieval (and many ML) 
algorithms. The anticipated size of high-resolution Bragg CDI datasets and intermediate results will be too 
large to fit in the memory of a single GPU. The APS is working with the Argonne Leadership Computing 
Facility (ALCF) and a team at NVIDIA to realize better, optimized multi- and distributed-GPU support for N-
dimensional complex FFTs. 

Argonne researchers are exploring the use of AI and Automatic Differentiation (AD) as a high-performance 
alternative to conventional phase retrieval algorithms for Bragg CDI (see Figure 2-1). This new workflow 
leverages a library of pre-computed, large-scale Molecular Dynamics (MD) simulations to provide on-the-fly, 
best guess structure to measured diffraction data through a trained deep convolutional neural network. 
Predictions are displayed in real-time at the instrument and are also used as the initial guess for iterative 
refinement through AD. This two-step approach will enable real-time feedback to an experiment and provide 
the highest possible fidelity in image reconstruction. A recently funded ALCF Expedition LDRD is focusing 
on using AI accelerators, such as Cerebras (CS-1) for Bragg CDI calculations. 
Table 2-3 Summary of Bragg CDI data reduction needs, approaches, and status for the ATOMIC APS-U feature beamline. 

Capability Algorithm / Software Requirement Status 
Conventional Phase Retrieval 
Reconstructions 

CPU and GPU software for Bragg CDI 
reconstructions 

Done – APS Operations 

Faster Conventional Phase 
Retrieval Reconstructions 

Scalable distributed-memory CPU and GPU 
implementation of conventional phase retrieval 
algorithms 

In Progress – APS Operations 

High-Resolution Conventional 
Phase Retrieval Reconstructions 

Support for multi- and distributed-GPU N-
dimensional complex FFTs 

In Progress – APS Operations working with the 
Argonne Leadership Computing Facility (ALCF) 
and NVIDIA 

AI / Automatic Differentiation 
(AD) Methods 

A deep learning (DL) approach to structure and 
strain prediction from raw X-ray diffraction data 
without the use of phase retrieval algorithms 

Demonstrated at low resolution – LDRD 

A CNN training set generator and a trained CNN 
for the study of metals; this can grow to other 
advanced materials without changes to the 
underlying workflow 

Demonstrated – LDRD 

Physics based image generation workflow 
installed at the CDI instrument to analyze 
coherent diffraction data in real-time 

In Progress – LDRD 

Network optimization and combining deep 
learning with automatic differentiation to enable 
highest possible image reconstruction accuracy 

To do – LDRD 

Scale to TB dataset sizes To do – APS Operations 
 

2.1.7 Effort, Funding, and Collaborations 
Network infrastructure to the edge of the ATOMIC APS-U feature beamline will be provided by APS-U 
funding. All other network infrastructure is funded by APS Operations funding as described in 1.2. Facility-
wide data management, workflows, and science portal effort is funded by APS Operations (approximately 2.5 
FTE per year) and the Globus Services team as described in 1.4. Some local computing resources dedicated to 
the ATOMIC APS-U feature beamline for on-the-fly processing and experiment steering will be provided from 
APS-U funding. Large-scale computing resources are provided by APS Operations funding, Argonne 
Leadership Computing Facility (ALCF) funding, and Argonne Laboratory Computing Resource Center 
(LCRC) funding as described in 1.5. The APS dedicates approximately 1 FTE per year for Bragg CDI software 
development from APS Operations funding. 
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Work on support for multi- and distributed-GPU N-dimensional complex FFTs is supported by NVIDIA and 
the Argonne Leadership Computing Facility (ALCF). 

The following LDRD funding was awarded to support these efforts: 

• A.I. C.D.I.: Atomistically Informed Coherent Diffraction Imaging (FY18) 
• Finding Critical Processes of Deformation in Structural Materials with Artificial Intelligence (FY19) 
• Scalable DL-based 3D X-ray Nanoscale Imaging Enabled by AI Accelerators (ALCF Expedition LDRD - 

FY21) 

 
Figure 2-1 AI workflow for Bragg CDI data inversion. 

2.2 Coherent High-Energy X-rays (CHEX) APS-U Feature Beamline 
2.2.1 Summary 
The Coherent High Energy X-rays (CHEX) APS-U feature beamline will use coherent x-ray techniques to 
advance the frontier for in situ, real-time studies of advanced materials synthesis and chemical transformations 
in natural operating environments, employing condensed-matter physics and environmental science. 

A workshop will be held on October 14 - 15, 2021 to discuss computing and data requirements for the CHEX 
APS-U feature beamline. 

2.3 Coherent Surface-Scattering Imaging (CSSI) APS-U Feature Beamline 
2.3.1 Summary 
The Coherent Surface-Scattering Imaging (CSSI) APS-U feature beamline will take advantage of the MBA 
lattice’s dramatically improved x-ray beam coherence for probing and understanding mesoscopic structures 
and dynamics at surfaces and interfaces. 

In the APS-U era, the CSSI APS-U feature beamline will employ two primary operation modes: Coherent 
Surface Scattering Imaging (CSSI) and Grazing-Incidence X-ray Scattering (GIXS). The latter includes 
Grazing-Incidence Wide-Angle X-ray Scattering (GIWAXS), GIWAXS with XPCS, Grazing-Incidence Small-
Angle X-ray Scattering (GISAXS), and GISAXS with XPCS. In addition, to characterize fast kinetics across a 
broad range of length scales, a fast data acquisition mode will be provided where both GIWAXS and GISAXS 
detectors are operated at high frame rates for short periods. Table 2-4 shows estimated data generation rates at 
the CSSI APS-U feature beamline. The CSSI APS-U feature beamline is anticipated to collect approximately 
17 PB raw data per year. These data generation estimates form the basis for networking infrastructure, 
controls, data management, and data processing planning. 
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Table 2-4 Estimated data generation rates at the CSSI APS-U feature beamline. 
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APS-U 
Era 

GIWAXS+ Lambda 10M 33.750 40 1 1.3 13% 3.5 38% 0.27 
GIWAXS-XPCS+ Lambda 10M 33.750 120,000 10 197.8 25% 69.5 5.42 
GISAXS+ Eiger 16M 61.035 40 1 2.4 13% 6.3 0.49 
GISAXS-XPCS+ Eiger 16M (1M XPCS mode) 3.815 540,000 10 201.2 25% 70.7 5.51 
Fast GIXS ++ Lambda 10M 33.750 30,000 1 988.8 14% 38.9 8% 0.64 

Eiger 16M 61.035 30,000 1 1788.1 14% 70.4 1.16 
CSSI+++ Eiger 16M 61.035 60,000 10 357.6 80% 40.2 46% 3.80 

* A compression factor of 1.0 represents no compression. 
** Based on 1,440 minutes in one day. Routine GIXS: 2 min data out of 20 min/sample = 10%. Spin GIXS: 5 min data out of 40 min/sample = 
12/5%. 
*** Based on 210 days of beam time per fiscal year. 
+ GIXS: Static simultaneous GIWAXS and GISAXS for 1 dataset, followed by 1 dataset simultaneous GIWAXS/GISAXS surface XPCS, 
assuming 5 min alignment. 
++ Fast GIXS: Simultaneous GIWAXS/GISAXS for 5 minutes, assuming 30 minutes required to set up sample. 
+++ CSSI: 20% of each day required for alignment and sample motions during scan. 

2.3.2 Network Architecture and Infrastructure 
Network infrastructure needs will be addressed by the facility plan described in 1.2 

2.3.3 Controls, Data Acquisition, and Detector Integration 
Controls, data acquisition, and detector integration needs will be addressed by the facility plan described in 
1.3. Detailed plans and schedules are described in respective APS-U beamline controls documents, Equipment 
Specification Documents (ESDs), and Instrument Specification Documents (ISDs). 

2.3.4 Data Management, Workflows, and Science Portals 
The APS-U CSSI feature beamline will leverage the data management, workflow, and science portal efforts 
described in 1.4. The APS Data Management System, the facility-wide software and hardware system for 
managing data and workflows, will integrate data collection and processing workflows, manage user 
permissions based on experiment groups, and enable user access to data. Globus tools will provide a science 
portal for viewing and accessing data and automating the re-processing of data after the allotted experiment 
time has ended. 

All operation modes of the APS-U CSSI feature beamline will generate data at high rates. The APS Data 
Management System will coordinate data transfer, data backup, preprocessing, and analysis, and provide 
visualization of analysis results to users. 

2.3.5 Computing Infrastructure 
Computing infrastructure needs will be addressed by the facility plan described in 1.5. Some local computing 
resources may be provided for on-the-fly data processing and experiment steering. The anticipated high data 
rate and large data volume generated by the CSSI beamline makes processing data likely beyond the capability 
of local workstations. Computing capacity for these data processing tasks and for post-experiment processing 
and analysis will be provided by computing centers, including the Argonne Leadership Computing Facility 
(ALCF) and Argonne’s Laboratory Computing Resource Center (LCRC). To develop performant codes 
suitable for ALCF, a local workstation with four GPUs has been commissioned as a test bed. The APS Data 
Management System and Globus tools will be used to integrate these resources. 

2.3.6 Data Reduction and Analysis 
Coherent Surface-Scattering Imaging (CSSI) Data Processing 
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CSSI is a coherent imaging technique for measuring surface and interface structures. The datasets must be 
preprocessed before they are fed into reconstruction algorithms. This preprocessing primarily involves 
centering, truncating higher spatial frequency information for reduced resolution images, and the detection and 
removal of foreign and parasitic signals in the measurements. Currently, the methods used to undertake this 
require human supervision. Numerical optimization and machine learning based methods are needed to take 
the human element out of the process. 

Conventional transmission-based coherent scattering algorithms for data inversion must be modified to 
account for CSSI’s geometry and multiple-scattering effects that are significant at low incidence angles. 
Algorithm prototypes are being developed to handle the data generated at the current instrument. Extensive 
algorithm optimization and scale-up is required to accommodate the reconstruction of CDI, ptychography, and 
laminography data collected with the surface reflection geometry at the CSSI beamline. For example, one 
algorithm under development treats the sample and substrate as a 3-D object, rather than 2-D projections used 
in many transmission ptychography algorithms and then calculates the expected scattering by using a multi-
slice approach. This algorithm is compute- and memory-intensive and is best run on a large memory GPU 
cluster. A Multi-Tiered Iterative Phasing (M-TIP) approach to decompose the larger problem into smaller 
solvable parts is being developed in collaboration with CAMERA. 

GIXS and GIXS-XPCS Data Processing 

Today, GIXS data analysis is performed with the APS developed and supported MATLAB package, 
GIXSGUI, and the CAMERA developed Python-based package, Xi-CAM, for long sequences of time-
resolved measurements. The integration of GIXSGUI with the APS Data Management System to automate 
data reduction and analysis at the 8-ID-E beamline is underway. 

At CSSI, the data production rate will be many orders-of-magnitude higher. Multiple-detector collection 
modes will be routine, adding further complexity for data processing. These challenges necessitate large 
volume and multiple-dimension real-time data visualization. The APS Data Management System will 
accommodate increased data volumes. Work will be undertaken to replace the current MATLAB-based tools 
with a new higher-performance and scalable Python-based toolkit. Thin-film structure peak indexing 
capabilities will also be improved. 

For XPCS data reduction and analysis, CSSI will leverage the resources and tools available and being 
developed for the XPCS beamline. 
Table 2-5 Summary CSSI APS-U feature beamline data reduction and processing capabilities and needs. 

Capability Algorithm / Software Requirement Status 
Data Visualization and 
Preprocessing 

Single image  Done – GIXSGUI – APS Operations 
Multiple images Done – Xi-Cam – CAMERA 
Support for scattering vector q To do – APS Operations 
New Python-based software package To do – APS Operations 

Thin-film Structure Indexing Basic implementation of space groups and 
indexing 

Done – APS Operations developed GIXSGUI, 
CAMERA developed Xi-Cam, and SSRL 
developed a thin-film structural indexing package 
SIIRkit. 

New scalable Python-based software package that 
integrates surface scattering (Distorted Wave 
Born Approximation) 

To do – APS Operations 

Coherent Surface Scattering 
Imaging (CSSI) 

Image reconstruction algorithms Done – APS Operations & DOE Early Career 
Award developed an algorithm to reconstruct 
CSSI ptychography data 
In Progress – CAMERA is developing an M-TIP 
based CSSI reconstruction algorithm 

Scalable CPU and GPU software In Progress – APS Operations & DOE Early 
Career Award is developing a multi-GPU CSSI 
ptychography reconstruction software package 

Surface XPCS XPCS correlation algorithms and software In Progress – APS Operations work is underway 
as part of effort for the XPCS APS-U feature 
beamline 
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2.3.7 Effort, Funding, and Collaborations 
Network infrastructure to the edge of the CSSI APS-U feature beamline will be provided by APS-U funding. 
All other network infrastructure is funded by APS Operations funding as described in 1.2. Facility-wide data 
management, workflows, and science portal effort is funded by APS Operations (approximately 2.5 FTE per 
year) and the Globus Services team as described in 1.4. Some local computing resources dedicated to the CSSI 
APS-U feature beamline for on-the-fly processing and experiment steering will be provided from APS-U 
funding. Large-scale computing resources are provided by APS Operations funding, Argonne Leadership 
Computing Facility (ALCF) funding, and Argonne Laboratory Computing Resource Center (LCRC) funding 
as described in 1.5. The APS dedicates approximately 1.5 FTE per year for CSSI related algorithm and 
software development from APS Operations funding. 

CAMERA provides effort in support of CSSI algorithm development. 

The following awards support these efforts: 

• Unraveling Mesoscale Spatial-temporal Correlations in Materials Using Coherent X-ray Probes (FY15 
LDRD) 

• Developing Advanced Coherent Surface Scattering Reconstruction Method Incorporating Dynamical 
Scattering Theory (FY17 LDRD) 

• Development of Coherent Surface Scattering Imaging with Nanometer Resolution for Revealing 3D 
Mesoscaled Structures (DOE Early Career Award) 

2.4 High-Energy X-ray Microscope (HEXM) APS-U Feature Beamline 
2.4.1 Summary 
The High-Energy X-ray Microscope (HEXM) APS-U feature beamline is designed to investigate structure and 
evolution within bulk materials, often in extreme environments, with established high-energy x-ray scattering 
techniques and novel coherence-based techniques enabled by the APS-U. 

Table 2-6 shows estimated data generation rates at the HEXM APS-U feature beamline. The HEXM 
instrument will perform near- and far-field, diffraction tomography, and imaging tomography measurements. 
The HEXM APS-U feature beamline is anticipated to collect approximately 20 PB of raw data per year and 5 
PB of compressed raw data per year in comparison to approximately 4 PB of raw data and approximately 1 PB 
of compressed raw data collected today at the 1-ID High-Energy Diffraction Microscopy (HEDM) instrument. 
Both uncompressed and compressed data sizes are given because uncompressed data is often required for data 
processing. This represents an approximately 4x increase in data. These data generation estimates form the 
basis for networking infrastructure, controls, data management, and data processing planning. 
Table 2-6 Data generation rates today at the 1-ID High-Energy Diffraction Microscopy (HEDM) instrument (for comparison) 
and estimated data generation rates at the HEXM APS-U feature beamline. 
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Today Near-Field Qimaging Retiga 
4000DC (4MP, 
CCD, 12-bit) 

8 3.3 26 11 4 54 1 0.25 25 62 15 

Far-Field Varex 4343CT 
(8MP, 14-16-bit) 

16 15 237 22 4 63 12 3 25 647 162 

Far-Field GE RT41 (4MP, 
14-bit) 

8 7 56 11 2 63 3 1.5 25 153 76 
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Far-Field Hydra 4x GE 
RT41 (16MP, 14-
bit) 

32 7 224 45 2 63 12 6 15 366 183 

Far-Field Pilatus 2M CdTe 
(20-bit) 

7 250 1,771 10 4 63 92 23 15 2,896 724 

Diffraction 
Tomography 

GE RT41 (4MP, 
14-bit) 

8 2 16 281 2 72 1 0.5 5 10 5 

Diffraction 
Tomography 

Hydra 4x GE 
RT41 (16MP, 14-
bit) 

32 2 64 1,125 2 72 4 2 5 40 20 

Diffraction 
Tomography 

GE RT41 (4MP, 
14-bit) 

8 7 56 2,250 2 72 3 1.66 5 35 17 

Diffraction 
Tomography 

Hydra 4x GE 
RT41 (16MP, 14-
bit) 

32 7 224 9,000 2 72 13 6.5 5 140 70 

Imaging 
Tomography 

PointGrey CMOS 
(2.3MP, 12-bit) 

4 5 22 15 1 54 1 1 20 41 41 

APS-U 
Era 

Near-Field FLIR Oryx 
(5MP, 12-bit) 

10 40 383 13 4 54 17 4 25 894 223 

Far-Field Dectris Pilatus 
6M (20-bit) 

18 125 2,226 25 4 63 116 29 40 9,706 2,426 

Diffraction 
Tomography 

Dectris Pilatus 
2M CdTe (20-bit) 

7 50 354 249 4 72 21 5 10 441 110 

Diffraction 
Tomography 

Dectris Eiger 
16M CdTe (12-
bit) 

52 50 2,595 1,825 4 72 154 39 10 3,233 808 

Diffraction 
Tomography 

Sydor SMM-
PAD CdTe (22-
bit) 

0.75 50 38 26.37 4 72 2.22 0.56 10 47 12 

Diffraction 
Tomography 

Dectris Pilatus 
2M CdTe (20-bit) 

7 250 1,771 1,993 4 72 105 26 5 1,103 276 

Diffraction 
Tomography 

Dectris Eiger 
16M CdTe (12-
bit) 

52 133 6,902 14,596 4 72 410 102 5 4,300 1,075 

Diffraction 
Tomography 

Sydor SMM-
PAD CdTe (22-
bit) 

0.75 1,000 750 211 4 72 45 11 5 467 117 

Imaging 
Tomography 

FLIR Oryx 5MP 
(12-bit) 

10 10 96 34 1 54 4 4 15 134 134 

Fast Imaging 
Tomography 

FLIR Oryx 5MP 
(12-bit) 

10 100 956 34 1 12 10 10 5 99 99 

* A compression factor of 1.0 represents no compression. 
** Based on 1,440 minutes in one day. Utilization reflects the overhead associated with detector duty cycles and motion, as well as related setup 
time for alignment, calibration, sample changes and sample alignment, in situ environment modification, etc. 
*** Based on 210 days of beam time per fiscal year. 

2.4.2 Network Architecture and Infrastructure 
Network infrastructure needs will be addressed by the facility plan described in 1.2. 

2.4.3 Controls, Data Acquisition, and Detector Integration 
Controls, data acquisition, and detector integration needs will be addressed by the facility plan described in 
1.3. Detailed plans and schedules are described in respective APS-U beamline controls documents, Equipment 
Specification Documents (ESDs), and Instrument Specification Documents (ISDs). 

2.4.4 Data Management, Workflows, and Science Portals 
The HEXM APS-U feature beamline will leverage the data management, workflow, and science portal efforts 
described in 1.4. The APS Data Management System, the facility-wide software and hardware system for 
managing data and workflows, will integrate data collection and processing workflows, manage user 
permissions based on experiment groups, and enable user access to data. Globus tools will provide a science 
portal for viewing and accessing data and automating the re-processing of data after the allotted experiment 
time has ended. For the HEXM APS-U feature beamline, workflows will provide a pipeline to automatically 
run data processing software for near- and far-field, diffraction tomography, and imaging tomography data 
reconstructions, and to view results. 
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2.4.5 Computing Infrastructure 
Computing infrastructure needs will be addressed by the facility plan described in 1.5. Some local computing 
resources will be provided for on-the-fly data processing and experiment steering. Computing capacity for 
larger data processing tasks and for post-experiment processing and analysis will be provided by computing 
centers, including the Argonne Leadership Computing Facility (ALCF) and Argonne’s Laboratory Computing 
Resource Center (LCRC). The APS Data Management System and Globus tools will be used to seamlessly 
integrate these resources. 

2.4.6 Data Reduction and Analysis 
The HEXM APS-U feature beamline requires data processing algorithms and software for near- and far-field, 
diffraction tomography, and imaging tomography measurements. Descriptions of current efforts and plans in 
each of these areas follow. Table 2-7 summarizes capabilities for each of these modes, respectively. 

Near- and Far-Field Diffraction Microscopy 

The APS develops and supports the Microstructural Imaging using Diffraction Analysis Software (MIDAS) 
software package for near- and far-field diffraction microscopy data processing. The software is available as an 
open-source package (https://github.com/marinerhemant/MIDAS). MIDAS is written in C++ and uses Python 
for scripting. Distributed-memory parallelization is achieved using the SWIFT parallel execution framework. 
Time-critical parts of the code have been ported to run on GPUs with CUDA. MIDAS has been demonstrated 
to scale to tens-of-thousands of cores on supercomputers at the Argonne Leadership Computing Facility 
(ALCF) and at the National Energy Research Scientific Computing Center (NERSC). An average size data set 
today is typically processed within a few minutes. The APS will continue to develop MIDAS by enabling the 
processing of data taken with 3D scans, implementing intensity fitting, closely integrating with tomographic 
reconstruction algorithms and software, and scaling and optimizing performance to support APS-U Era data 
rates and sizes. 

In addition to APS developed software, IceNine supports processing near-field diffraction data, and Fable and 
HEXRD support far-field data processing. 

Diffraction Tomography 

APS staff in the Materials Physics & Engineering group have developed prototype software in MATLAB to 
reconstruct diffraction tomography data. This prototype MATLAB software serves as a proof-of-principle for 
algorithm quality. The APS will develop production ready, higher-performance software for diffraction 
tomography reconstructions, for APS-U Era data. Algorithmic work will continue to integrate more advanced 
algorithms uses for imaging tomography, such as Algebraic Reconstruction Technique (ART) based 
reconstruction methods. 

Imaging Tomography 

The APS develops and supports the TomoPy tomographic reconstruction library. TomoPy is available as an 
open-source library (https://github.com/tomopy/tomopy). TomoPy is primarily written in Python and has 
integrated MPI-based and GPU-based routines for performance. Reconstruction algorithms in TomoPy have 
been scaled to run on supercomputers at the Argonne Leadership Computing Facility (ALCF), the National 
Energy Research Scientific Computing Center (NERSC), and the Oak Ridge Leadership Computing Facility. 
In the APS-U Era, close integration of tomography reconstruction algorithms with MIDAS will improve 
performance and add convenience for users. 

AI/ML Developments for the HEXM APS-U Feature Beamline 

Researchers at the APS and from Argonne’s Data Science & Learning (DSL) division have developed a deep 
neural network called BraggNN. This method enables extraction of precise Bragg peak locations from far-field 
High-Energy Diffraction Microscopy (HEDM) data. The model runs more than 200 times faster than the 
conventional pseudo-Voigt profiling to locate Bragg peak position (see Figure 2-2). 
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The APS is researching Point Focused High-Energy Diffraction Microscopy (PF-HEDM) as a technique that 
pushes the limits of HEDM techniques to smaller grains to obtain sub-granular information. Preliminary 
algorithms developed using tomography-like reconstructions are promising. Researchers are developing 
inversion tools using AI/ML to improve the quality of reconstructions and obtain higher-quality answers. 
These developments may provide an alternative to conventional diffraction tomography methods. 
Table 2-7 Summary of near- and far field-diffraction, diffraction tomography, and imaging tomography data processing needs 
and status for the HEXM APS-U feature beamline. 

Science Driver Capability Algorithm / Software Requirement Status 
Smaller grains 
Greater dispersity 
Higher deformation 

Near-Field Diffraction Scalable distributed-memory CPU and GPU 
implementation 

Done – APS Operations – MIDAS 

Intensity fitting To do – APS Operations 
Smaller grains 
Greater dispersity 
Higher deformation 

Far-Field Diffraction Scalable distributed-memory CPU and GPU 
implementation 

Done – APS Operations – MIDAS 

Multi-panel support Done – APS Operations – MIDAS 
3D scanning support To do – APS Operations 

Nano-grains 
Amorphous materials 

Diffraction (Scattering) 
Tomography 

Prototype implementation Done – APS Operations - MATLAB 
Scalable distributed-memory CPU and GPU 
implementation 

To do – If needed – APS Operations 

Integrate more advanced tomographic 
reconstruction algorithms, e.g., ART 

To do – If needed – APS Operations 

Faster processes 
(sub-second) 

Imaging Tomography Scalable distributed-memory CPU and GPU 
implementation 

Done – APS Operations – TomoPy 

Integration with MIDAS To do – APS Operations 
 

2.4.7 Effort, Funding, and Collaborations 
Network infrastructure to the edge of the HEXM APS-U feature beamline will be provided by APS-U funding. 
All other network infrastructure is funded by APS Operations funding as described in 1.2. Facility-wide data 
management, workflows, and science portal effort is funded by APS Operations (approximately 2.5 FTE per 
year) and the Globus Services team as described in 1.4. Some local computing resources dedicated to the 
HEXM APS-U feature beamline for on-the-fly processing and experiment steering will be provided from APS-
U funding. Large-scale computing resources are provided by APS Operations funding, Argonne Leadership 
Computing Facility (ALCF) funding, and Argonne Laboratory Computing Resource Center (LCRC) funding 
as described in 1.5. The APS dedicates approximately 1 FTE per year for HEDM software development and 
approximately 1 FTE per year for TomoPy development from APS Operations funding. 

In addition to APS Operations funding, the APS benefits from long-term collaborations with the Air Force 
Research Laboratory (AFRL), Carnegie Mellon University (CMU), in particular an NSF-MRI grant to CMU 
supported the development of a new APS High-Throughput High-Energy Diffraction Microscopy (HEDM) 
beamline at 6-ID-D, and past and future industrial partnerships with GE and Pratt & Whitney. 

AI/ML BraggNN work is funded by Information from Sensor to Data Center (PI: Jana Thayer, SLAC National 
Accelerator Laboratory, LAB 20-2261). 

The following LDRD funding was awarded to support these efforts: 

• Finding Critical Processes of Deformation in Structural Materials with Artificial Intelligence (FY19) 
• AI-steer: AI-driven Online Steering of Light Source Experiments (FY20) 
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Figure 2-2 BraggNN: Grain center positions in microns determined by three methods, with a full high-resolution grain map from 
Near-Field HEDM superimposed in background. The Near-Field HEDM results provide the highest accuracy against which the 
grain-averaged Far-Field HEDM results can be compared. On average BraggNN provided slightly smaller position error than 
the conventional method. 

2.5 In Situ Nanoprobe (ISN) APS-U Feature Beamline 
2.5.1 Summary 
The In Situ Nanoprobe (ISN) APS-U feature beamline is designed to study advanced materials during 
fabrication and operation. Its large working distance enables broad in situ environments, including heating, 
cooling, flow of process gases and fluids, and application of electric fields. The ISN beamline takes advantage 
of the upgraded source and is ideally suited for applications requiring diffraction-limited focusing. The ISN 
instrument will be a scanning nanoprobe, with x-ray fluorescence (XRF) detection and ptychography as major 
contrast modes. A secondary area detector will collect diffracted x-rays and provide some capability to identify 
local crystalline states. 

Table 2-8 shows estimated data generation rates at the ISN APS-U feature beamline, and current data rates at 
the 2-ID-D ptychography and diffraction, 2-ID-E XRF, and Bio Nano-Probe (BNP) XRF instruments for 
comparison. The ISN APS-U feature beamline is anticipated to collect approximately 10 PB of raw data per 
year and 1 PB of compressed raw data per year, in comparison to approximately 104 TB of raw data and 
approximately 11 TB of compressed raw data collected today across the 2-ID-D ptychography and diffraction, 
2-ID-E XRF, and Bio Nano-Probe (BNP) XRF instruments. Both uncompressed and compressed data sizes are 
given because uncompressed data is often required for data processing. This represents a nearly 100x increase 
in data. These data generation estimates form the basis for networking infrastructure, controls, data 
management, and data processing planning. 
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Table 2-8 Data generation rates today at the 2-ID-D ptychography and diffraction, 2-ID-E XRF, and Bio Nano-Probe (BNP) 
XRF instruments (for comparison) and estimated data generation rates at the ISN APS-U feature beamline. 
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Today 2-ID-D 
Ptychography 

Dectris Eiger 
500K 

1.010 100 98 986 10 25 8,520 852 5 87 8.74 

2-ID-D 
Diffraction 

Dectris Eiger 
500K 

1.010 10 9.86 0.20 10 100 213 21 30 13 1.31 

2-ID-E XRF Vortex ME4 0.008 20 0.15 1.91 5 100 13.18 2.64 80 2.16 0.43 
BNP XRF Vortex ME4 0.008 20 0.15 0.69 15 100 13.18 0.88 80 2.16 0.14 

APS-U 
Era 

ISN XRF 2 X Vortex 
ME7 

0.008 1M 52 1.30 5 45 2,028 406 25 104 21 

ISN 
Ptychography 

Dectris Eiger 
1M 

2.092 3,000 5,000 204,322 10 35 185,362 18,536 20 7,603 760 

ISN 
Diffraction 

Dectris Eiger 
1M 

2.092 3,000 5,000 40.86 10 10 52,960 5,296 20 3,528 326 

* A compression factor of 1.0 represents no compression. 
** Based on 1,440 minutes in one day. 
*** Based on 210 days of beam time per fiscal year. 
 

2.5.2 Network Architecture and Infrastructure 
Network infrastructure needs will be addressed by the facility plan described in 1.2. 

2.5.3 Controls, Data Acquisition, and Detector Integration 
Controls, data acquisition, and detector integration needs will be addressed by the facility plan described in 
1.3. Detailed plans and schedules are described in respective APS-U beamline controls documents, Equipment 
Specification Documents (ESDs), and Instrument Specification Documents (ISDs). 

2.5.4 Data Management, Workflows, and Science Portals 
The ISN APS-U feature beamline will leverage the data management, workflow, and science portal efforts 
described in 1.4. The APS Data Management System, the facility-wide software and hardware system for 
managing data and workflows, will integrate data collection and processing workflows, manage user 
permissions based on experiment groups, and enable user access to data. Globus tools will provide a science 
portal for viewing and accessing data and automating the re-processing of data after the allotted experiment 
time has ended. For the ISN APS-U feature beamline, workflows will provide a pipeline to automatically run 
tools to remove artifacts from data, reconstruct the XRF, Ptychography, and Diffraction data set, and view 
results. 

2.5.5 Computing Infrastructure 
Computing infrastructure needs will be addressed by the facility plan described in 1.5. Some local computing 
resources will be provided for on-the-fly data processing and experiment steering. Computing capacity for 
larger data processing tasks and for post-experiment processing and analysis will be provided by computing 
centers, including the Argonne Leadership Computing Facility (ALCF) and Argonne’s Laboratory Computing 
Resource Center (LCRC). The APS Data Management System and Globus tools will be used to seamlessly 
integrate these resources. 

2.5.6 Data Reduction and Analysis 
The ISN APS-U feature beamline requires three modes of data processing: elemental fitting for XRF 
microscopy data, ptychography data reconstruction, and space-mapping for diffraction data. Descriptions of 
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current efforts and plans in each of these areas follow. Table 2-9, Table 2-10, and Table 2-11 summarize 
capabilities for each of these three modes, respectively. Many of the data processing requirements for the ISN 
APS-U feature beamline are like those of the PtychoProbe APS-U feature beamline described in 2.7. 

Elemental Fitting for XRF Microscopy Data 

The APS develops and supports the XRF-Maps and uProbeX software packages for XRF microscopy data 
processing and visualization (see Figure 2-3). This software is available as open-source packages 
(https://github.com/AdvancedPhotonSource/XRF-Maps and 
https://github.com/AdvancedPhotonSource/uProbeX). The XRF-Maps package performs elemental map fitting 
and the uProbeX application is a GUI for visualizing XRF-Maps results. XRF-Maps and uProbeX are both 
written in C++. XRF-Maps supports multi-core data processing in a shared-memory CPU environment and has 
a Python wrapper which allows all the functionality to be called from a Python environment. 

APS-U enhancements will allow for larger scan areas resulting in larger datasets. These larger datasets may not 
be able to fit in system memory. To accommodate this XRF-Maps implements a streaming architecture that 
allows processing a dataset spectra by spectra without having to load the entire dataset. Only a limited number 
of spectra are loaded based on memory limits, processed, and saved to an HDF5 file until the whole dataset is 
processed. As data sizes increase, it may be become necessary to develop GPU-based and distributed-memory 
CPU- and GPU-based elemental fitting software. 

The higher intensity x-ray beam generated by the APS-U storage ring necessitates the use of self-absorption 
correction when generating elemental maps. APS researchers and instrument staff are working on developing 
new self-absorption correction algorithms in collaboration with staff at the National Synchrotron Light Source 
II (NSLS-II) at Brookhaven National Laboratory (BNL). These algorithms are being implemented and tested in 
the XRF-Maps software. 
Table 2-9 Summary of XRF microscopy elemental mapping data processing needs and status for the ISN APS-U feature 
beamline. 

Capability Algorithm / Software Requirement Status 
XRF Elemental Map Fitting Algorithms for elemental map fitting Done 

Multi-core shared-memory CPU implementation Done – APS Operations 
Streaming data processing / operate on out-of-
core data 

Done – APS Operations 

Distributed-memory CPU and GPU 
implementation 

To do – If required 

XRF Self-Absorption Correction Self-absorption correction algorithm development In Progress – APS Operations and collaborations 
with NSLS-II 

Self-absorption correction implementation in 
XRF-Maps 

In Progress – APS Operations 

 

Ptychography Reconstruction 

Ptychography has emerged as a powerful technique at synchrotron light sources. It will play a central role in 
answering many emerging scientific questions that the upgraded APS will help solve. Advanced ptychographic 
reconstruction algorithms and software are critical to take advantage of this new and innovative technique. 

Multiple ptychographic reconstruction algorithms are required to achieve reasonable reconstruction quality to 
best analyze ptychography data collected for different domains and of varying sample characteristics. The APS 
has implemented the extended Ptychographic Iterative Engine (ePIE), Difference Map (DM), and iterative 
Least-SQuares solver for generalized Maximum-Likelihood (LSQ-ML) methods. Algorithms to help improve 
reconstruction quality, such as position and prove variation correction, and affine position regularization, are 
being developed and implemented. 

Due to the computationally complex nature of ptychographic reconstruction algorithms and due to the 
anticipated increase in data rates and sizes in the APS-U Era, distributed high-performance implementations of 
ptychography reconstruction software is required. In 2014, the APS with collaborators in Argonne’s 
Mathematics & Computer Science (MCS) division developed PtychoLib, a distributed-memory GPU 
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implementation of the extended Ptychographic Iterative Engine (ePIE) and Difference Map (DM) algorithms. 
PtychoLib is written in C++ and uses MPI and CUDA. The software was shown to scale on up to 256 GPUs on 
the Argonne Leadership Computing Facility’s Cooley GPU cluster. This software has been supported and 
extended since then and has been the main tool used for high-performance ptychography reconstructions at 
APS beamlines. PtychoPy (https://github.com/kyuepublic/ptychopy) was developed as a Python wrapper and 
GUI for PtychoLib. Currently, the APS has consolidated ptychography development into the tike 
(https://github.com/tomography/tike) toolkit. This toolkit is written in Python and uses CuPy. 
Table 2-10 Summary of ptychography reconstruction needs and status for the ISN APS-U feature beamline. 

Capability Algorithm / Software Requirement Status 
Conventional Reconstruction GPU implementation of extended Ptychographic Iterative 

Engine (ePIE) method 
Done – APS Operations 

GPU implementation of Difference Map (DM) method Done – APS Operations 
GPU implementation of the iterative Least-SQuares solver for 
generalized Maximum-Likelihood (LSQ-ML) method 

Done – APS Operations 

Improved Reconstruction 
Quality 

Position correction Done – APS Operations 
Probe variation correction Done – APS Operations 
Multi-probe retrieval In Progress – APS Operations 
Mini-batches In Progress – APS Operations 
Multi-wavelength In Progress – APS Operations 
Arbitrary fly-scan In Progress – APS Operations 
Multi-slice ptychography In Progress – APS Operations 
Integration with CNN denoising and priors (regularization) In Progress – APS Operations 
Affine position regularization In Progress – APS Operations 

High-Performance 
Implementations 

Scalable distributed-memory GPU implementation of 
extended Ptychographic Iterative Engine (ePIE) method 

Done – APS Operations and ASCR 
funding – PtychoLib 

Scalable distributed-memory GPU implementation of 
Difference Map (DM) method 

Done – APS Operations and ASCR 
funding – PtychoLib 

Scalable distributed-memory GPU implementation of iterative 
least-squares solver for generalized maximum-likelihood 
(LSQ-ML) method 

In Progress – APS Operations 

 

APS-U Era data rates are expected to be so large that traditional algorithms may not be able to keep up with 
acquired data. These data rates are so large, and the scientific problems that APS-U Era capabilities can enable 
are so great, that porting and scaling current models and algorithmic approaches may not realize the full 
promise of next-generation light sources. Using AI techniques, APS researchers have developed an approach 
to improve the performance of ptychographic reconstructions. A deep neural network model is trained to 
predict and reconstruct ptychographic x-ray data. This approach, PytchoNN, can then perform reconstructions 
up to 300 times faster than conventional iterative approaches and uses up to 5 times less data, speeding up both 
data acquisition and data reconstruction (see Figure 2-4). 

Space-Mapping for Diffraction Data 

The APS develops and supports the RSMap3D tool for diffraction space-mapping (see Figure 2-5). This 
software is available as an open-source package (https://github.com/AdvancedPhotonSource/rsMap3D). The 
tool allows users to examine the volume of collected data and select portions on which to apply 
transformations that convert detector pixel locations from diffractometer geometry to reciprocal-space units, 
and then map pixel data onto a 3D reciprocal-space grid. This application uses diffractometer angles, the 
energy of the scan and sample to detector distances to calculate either q-vector component values or HKL 
values. These values are calculated for each detector pixel and scan position. The calculated q/HKL value and 
pixel intensity is then binned in a 3D grid based on the selected q/HKL values. The core routines utilize 
OpenMP to parallelize operations across multiple cores on a shared-memory CPU. Data too big to fit entirely 
into memory at one time are processed in smaller chunks and reassembled to form the final output volume, 
allowing users to process arbitrarily large input datasets. It will be straightforward to extend this application to 
operate in a distributed-memory CPU environment if needed. These parallel and out-of-core computational 
techniques will be critical to handle larger data rates expected in the APS-U Era. 
Table 2-11 Summary of diffraction space-mapping data processing needs and status for the ISN APS-U feature beamline. 
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Capability Algorithm / Software Requirement Status 
RSM for Diffraction 
Data 

Multi-core shared-memory CPU implementation Done – APS Operations in collaboration with DESY 
Operate on out-of-core data Done – APS Operations 
Distributed-memory CPU and GPU implementation To do – If required 

 

2.5.7 Effort, Funding, and Collaborations 
Network infrastructure to the edge of the ISN APS-U feature beamline will be provided by APS-U funding. 
All other network infrastructure is funded by APS Operations funding as described in 1.2. Facility-wide data 
management, workflows, and science portal effort is funded by APS Operations (approximately 2.5 FTE per 
year) and the Globus Services team as described in 1.4. Some local computing resources dedicated to the ISN 
APS-U feature beamline for on-the-fly processing and experiment steering will be provided from APS-U 
funding. Large-scale computing resources are provided by APS Operations funding, Argonne Leadership 
Computing Facility (ALCF) funding, and Argonne Laboratory Computing Resource Center (LCRC) funding 
as described in 1.5. The APS dedicates approximately 1 FTE per year for XRF elemental mapping and 
diffraction space-mapping software development from APS Operations funding. 

The following LDRD funding was awarded to support these efforts: 

• Novel Capabilities for Ultra-fast and Ultra-low-dose 3D Scanning Hard X-ray Microscopy (FY18) 
• Enabling Automatic Learning of Atmospheric Particles through APS-U (FY19) 
• Learning and Differentiating: Using Artificial Intelligence to Image Beyond the X-ray Depth of Focus 

Limit (FY19) 
• Intelligent Ptychography Scan via Diffraction-Based Machine Learning (FY20) 
• AutoPtycho: Autonomous, Sparse-sampled Ptychographic Imaging (FY21) 
• AI Accelerator for 3D X-ray Phase Retrieval with Automatic Differentiation (FY21) 

 
Figure 2-3 Left: uProbeX displaying integrated spectra from a dataset in blue, background subtraction in green, modeled spectra 
in orange, and elemental lines for element S. Right: uProbeX displaying Calcium quantities of an analyzed fish fossil. Elemental 
maps are generated with XRF-Maps. 

 
Figure 2-4 Architecture of PtychoNN, a deep convolutional neural network that can predict real-space amplitude and phase from 
input diffraction data alone. 
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Figure 2-5 Visualization of a dataset from a pixel from a Silicon analyzer crystal processed with RSMap3D. This data shows a 
combination of diffraction (bright spots) and thermal diffuse scattering (broad lines connecting diffraction spots).  This data was 
taken on the High Energy Resolution Inelastic X-Ray Spectrometer (HERIX) at APS Sector 30. 

2.6 Polarization Modulation Spectroscopy (Polar) APS-U Feature Beamline 
2.6.1 Summary 
The Polarization Modulation Spectroscopy (Polar) APS-U feature beamline will use the polarization 
dependence of resonant absorption and scattering techniques to study emergent quantum states in novel 
electronic and magnetic materials. Emphasis is placed on tuning/controlling competing ground states and 
electronic inhomogeneity with a combination of extreme high-pressures low temperature and high magnetic 
fields. Brilliant beams with tunable circular-and linear-polarization states will allow reaching extreme 
pressures as well as mapping electronic inhomogeneity in both real and reciprocal space. 

In the APS-U era, the Polar APS-U feature beamline will support several techniques, some of which are novel 
and some of which are a continuation of existing activities. X-ray Absorption Spectroscopy (XAS), X-ray 
Magnetic Circular Dichroism (XMCD), X-ray Magnetic Linear Dichroism (XMLD), and Hard Resonant 
Magnetic Scatting techniques performed today collect small volumes of data. These techniques will continue 
in the APS-U Era. New techniques planned for Polar are: Hard Resonant Magnetic Scattering and Polarization 
Modulated Hard Resonant Magnetic Scattering, Hard Resonant X-Ray Ptychography and Polarization 
Modulated Hard Resonant X-Ray Ptychography, Bragg CDI Magnetic Contrast, and Tomographic CDI. These 
data generation estimates form the basis for networking infrastructure, controls, data management, and data 
processing planning. 

Table 2-12 shows the estimated data generation rates at the Polar APS-U feature beamline. The Polar APS-U 
feature beamline is anticipated to collect approximately 80 PB of raw data per year. These data generation 
estimates form the basis for networking infrastructure, controls, data management, and data processing 
planning. 
Table 2-12 Estimated data generation rates at the Polar APS-U feature beamline. 
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Today 4-ID-D XAS / XMCD Si Drift Multi-Element 2.73 0.0014 547 90 5 1.01 
4-ID-D XAS / XMCD (mapping 10 
um, high-pressure 1 Mbar) 

Si Drift Multi-Element 547 0.0014 547 90 10 2.18 

4-ID-D Hard Resonant Magnetic 
Scattering (mapping 100 nm) 

Scintilator (NaI) / 
Avalance Photodiode 

0.0.38 7.6E-7 0.3815 90 10 0.0012 

APS-U 
Era 

4-ID-G Hard Resonant Magnetic 
Scattering (mapping 100 nm) 

PAD 1M 2.62 0.5231 9,416 90 10 854,149 
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4-ID-G Hard Resonant Magnetic 
Scattering – Polarization Modulated 
(mapping 100 nm) 

PAD 1M 2.62 26.15 235,380 90 10 42,707,333 

4-ID-G Hard Resonant X-ray 
Ptychography 

PAD 1M 2.62 0.5231 26,153 90 10 854,149 

4-ID-G Hard Resonant X-ray 
Ptychography – Polarization 
Modulated 

PAD 1M 2.62 26.15 653,833 90 10 42,707,333 

4-ID-G Bragg CDI Magnetic 
Contrast 

PAD 1M 2.62 26.15 653,833 90 5 427,069 

4-ID-G Tomographic CDI PAD 1M 2.62 26.15 10,461 90 10 854,149 
4-ID-H XAS / XMCD / XMLD 
(mapping 300 nm, high-pressure 7 
Mbar) 

Si Drift Multi-Element 268 0.0014 268 90 10 2.18 

* Based on 1,440 minutes in one day. 
** Based on 210 days of beam time per fiscal year. 

2.6.2 Network Architecture and Infrastructure 
Network infrastructure needs will be addressed by the facility plan described in 1.2. 

2.6.3 Controls, Data Acquisition, and Detector Integration 
Controls, data acquisition, and detector integration needs will be addressed by the facility plan described in 
1.3. Detailed plans and schedules are described in respective APS-U beamline controls documents, Equipment 
Specification Documents (ESDs), and Instrument Specification Documents (ISDs). 

2.6.4 Data Management, Workflows, and Science Portals 
The APS-U Polar feature beamline will leverage the data management, workflow, and science portal efforts 
described in 1.4. The APS Data Management System, the facility-wide software and hardware system for 
managing data and workflows, will integrate data collection and processing workflows, manage user 
permissions based on experiment groups, and enable user access to data. Globus tools will provide a science 
portal for viewing and accessing data and automating the re-processing of data after the allotted experiment 
time has ended. For the Polar APS-U feature beamline, workflows will provide a pipeline to automatically run 
analysis and reconstruction tools. 

2.6.5 Computing Infrastructure 
Computing infrastructure needs will be addressed by the facility plan described in 1.5. Some local computing 
resources will be provided for on-the-fly data processing and experiment steering. Computing capacity for 
larger data processing tasks and for post-experiment processing and analysis will be provided by computing 
centers, including the Argonne Leadership Computing Facility (ALCF) and Argonne’s Laboratory Computing 
Resource Center (LCRC). The APS Data Management System and Globus tools will be used to seamlessly 
integrate these resources. 

2.6.6 Data Reduction and Analysis 
Algorithms for processing Hard Resonant Magnetic Scattering data are well understood. The APS uses 
software, including the APS developed XMCD Tools package, and PyMCA developed at ESRF for processing 
resonant magnetic scattering data. If required, the APS will develop scalable distributed-memory CPU and 
GPU implementations for processing the large volumes of APS-U Era data generated at the Polar APS-U 
feature beamline. 

Reconstruction algorithms for processing Hard Resonant X-ray Ptychography data are not yet defined. The 
APS is currently performing preliminary R&D in this area. The APS will leverage the tike ptychography 
toolkit as a framework for implementing algorithms in this area. If required, the APS will develop scalable 
distributed-memory CPU and GPU implementations for processing the large volumes of Hard Resonant X-ray 
Ptychography data generated by the Polar APS-U feature beamline. 

Algorithms to process Bragg CDI Magnetic Contrast data are not yet defined. The APS is currently performing 
preliminary R&D in this area. The APS will leverage the cohere toolkit as a framework for implementing 
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algorithms in this area. If required, the APS will develop scalable distributed-memory CPU and GPU 
implementations for processing the large volumes of Bragg CDI Magnetic Contrast data generated by the Polar 
APS-U feature beamline. 

Tomographic CDI reconstruction algorithms are not yet defined. The APS is currently performing preliminary 
R&D in this area. The APS will leverage the TomoPy toolkit as a framework for implementing algorithms in 
this area. If required, the APS will develop scalable distributed-memory CPU and GPU implementations for 
processing the large volumes of Tomographic CDI data generated by the Polar APS-U feature beamline. 
Table 2-13 Summary of data reduction needs, approaches, and status for the Polar APS-U feature beamline. 

Capability Algorithm / Software Requirement Status 
Hard Resonant 
Magnetic Scattering 

Algorithm development Done – APS Operations 
Single CPU software implementation Done – APS Operations – XMCD Tools - 

PyMCA 
Scalable distributed-memory CPU and GPU implementation To do – If required 

Hard Resonant X-ray 
Ptychography 

Algorithm development To do – APS Operations 
Single CPU software implementation To do – APS Operations – Leverage tike tools 

for ptychography reconstruction 
Scalable distributed-memory CPU and GPU implementation To do – If required 

Bragg CDI Magnetic 
Contrast 

Algorithm development To do – APS Operations 
Single CPU software implementation To do – APS Operations – Leverage cohere 

tools for Bragg CDI 
Scalable distributed-memory CPU and GPU implementation To do – If required 

Tomographic CDI Algorithm development To do – APS Operations 
Single CPU software implementation To do – APS Operations – Leverage TomoPy 

tools for tomographic reconstruction 
Scalable distributed-memory CPU and GPU implementation To do – If required 

 

2.6.7 Effort, Funding, and Collaborations 
Network infrastructure to the edge of the Polar APS-U feature beamline will be provided by APS-U funding. 
All other network infrastructure is funded by APS Operations funding as described in 1.2. Facility-wide data 
management, workflows, and science portal effort is funded by APS Operations (approximately 2.5 FTE per 
year) and the Globus Services team as described in 1.4. Some local computing resources dedicated to the Polar 
APS-U feature beamline for on-the-fly processing and experiment steering will be provided from APS-U 
funding. Large-scale computing resources are provided by APS Operations funding, Argonne Leadership 
Computing Facility (ALCF) funding, and Argonne Laboratory Computing Resource Center (LCRC) funding 
as described in 1.5. 

2.7 PtychoProbe APS-U Feature Beamline 
2.7.1 Summary 
The PtychoProbe APS-U feature beamline (Ptychography + Nanoprobe) is designed to realize the highest 
possible spatial resolution X-ray microscopy both for structural and chemical information. The unprecedented 
brightness of the APS MBA lattice will be exploited to produce a nm-beam of focused hard X-rays to achieve 
the highest possible sensitivity to trace elements, and ptychography will be used to further improve the spatial 
resolution for structural components to its ultimate limit. The proposed beamline will enable high resolution 
two- and three-dimensional imaging of thick objects and bridge the resolution gap between contemporary X-
ray and electron microscopy. Extending X-ray microscopy into the nanoscale is crucial for understanding 
complex hierarchical systems on length scales from atomic up to meso and macroscales, and time scales down 
to the microsecond level, and is applicable to scientific questions ranging from biology to earth and 
environmental materials science, to electrochemistry, catalysis and corrosion, and beyond. 

Table 2-14 shows estimated data generation rates at the PtychoProbe APS-U feature beamline. The 
PtychoProbe APS-U feature beamline is anticipated to collect approximately 16.5 PB of raw data per year and 
1.4 PB of compressed raw data per year, in comparison to approximately 104 TB of raw data and 
approximately 11 TB of compressed raw data collected today across the 2-ID-D ptychography and diffraction, 
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2-ID-E XRF, and Bio Nano-Probe (BNP) XRF instruments. Both uncompressed and compressed data sizes are 
given because uncompressed data is often required for data processing. This represents an approximately 100x 
increase in data. These data generation estimates form the basis for networking infrastructure, controls, data 
management, and data processing planning. 
Table 2-14 Data generation rates today at the 2-ID-D ptychography, 2-ID-E XRF, and Bio Nano-Probe (BNP) XRF instruments 
(for comparison) and estimated data generation rates at the PtychoProbe APS-U feature beamline. 
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Today 2-ID-D 
Ptychography 

Dectris 
Eiger 
500K 

1.010 100 98 986 10 25 8,520 852 5 87 8.74 

2-ID-D 
Diffraction 

Dectris 
Eiger 
500K 

1.010 10 9.86 0.20 10 100 213 21 30 13 1.31 

2-ID-E XRF Vortex 
ME4 

0.008 20 0.15 1.91 5 100 13.18 2.64 80 2.16 0.43 

BNP XRF Vortex 
ME4 

0.008 20 0.15 0.69 15 100 13.18 0.88 80 2.16 0.14 

APS-U 
Era 

PtychoProbe 
XRF 

Vortex 
ME7 

0.00003 1M 26 0.65 5 30 676 135 25 35 6.93 

PtychoProbe 
Ptychography 

Dectris 
Eiger 1M 

2.092 3,000 5,000 2,043 10 40 211,841 21,184 20 8,689 869 

PtychoProbe 
Diffraction 

Dectris 
Eiger 1M 

2.092 3,000 5,000 40.86 10 25 132,401 13,240 30 8,146 815 

* A compression factor of 1.0 represents no compression. 
** Based on 1,440 minutes in one day. 
*** Based on 210 days of beam time per fiscal year. 

2.7.2 Network Architecture and Infrastructure 
Network infrastructure needs will be addressed by the facility plan described in 1.2. 

2.7.3 Controls, Data Acquisition, and Detector Integration 
Controls, data acquisition, and detector integration needs will be addressed by the facility plan described in 
1.3. Detailed plans and schedules are described in respective APS-U beamline controls documents, Equipment 
Specification Documents (ESDs), and Instrument Specification Documents (ISDs). 

2.7.4 Data Management, Workflows, and Science Portals 
The PtychoProbe APS-U feature beamline will leverage the data management, workflow, and science portal 
efforts described in 1.4. The APS Data Management System, the facility-wide software and hardware system 
for managing data and workflows, will integrate data collection and processing workflows, manage user 
permissions based on experiment groups, and enable user access to data. Globus tools will provide a science 
portal for viewing and accessing data and automating the re-processing of data after the allotted experiment 
time has ended. For the PtychoProbe APS-U feature beamline, workflows will provide a pipeline to 
automatically run tools to remove artifacts from data, reconstruct the XRF, Ptychography, and Diffraction data 
set, and view results. 

2.7.5 Computing Infrastructure 
Computing infrastructure needs will be addressed by the facility plan described in 1.5. Some local computing 
resources will be provided for on-the-fly data processing and experiment steering. Computing capacity for 
larger data processing tasks and for post-experiment processing and analysis will be provided by computing 
centers, including the Argonne Leadership Computing Facility (ALCF) and Argonne’s Laboratory Computing 
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Resource Center (LCRC). The APS Data Management System and Globus tools will be used to seamlessly 
integrate these resources. 

2.7.6 Data Reduction and Analysis 
The PtychoProbe APS-U feature beamline requires three modes of data processing: elemental fitting for XRF 
microscopy data, ptychography data reconstruction, and space-mapping for diffraction data. Descriptions of 
current efforts and plans in each of these areas follow. Table 2-15, Table 2-16, and Table 2-17 summarize 
capabilities for each of these three modes, respectively. Many of the data processing requirements for the 
PtychoProbe APS-U feature beamline are like those of the ISN APS-U feature beamline described in 2.5. 

Elemental Fitting for XRF Microscopy Data 

The APS develops and supports the XRF-Maps and uProbeX software packages for XRF microscopy data 
processing and visualization (see Figure 2-6). This software is available as open-source packages 
(https://github.com/AdvancedPhotonSource/XRF-Maps and 
https://github.com/AdvancedPhotonSource/uProbeX). The XRF-Maps package performs elemental map fitting 
and the uProbeX application is a GUI for visualizing XRF-Maps results. XRF-Maps and uProbeX are both 
written in C++. XRF-Maps supports multi-core data processing in a shared-memory CPU environment and has 
a Python wrapper which allows all the functionality to be called from a Python environment. 

APS-U enhancements will allow for larger scan areas resulting in larger datasets. These larger datasets may not 
be able to fit in system memory. To accommodate this XRF-Maps implements a streaming architecture that 
allows processing a dataset spectra by spectra without having to load the entire dataset. Only a limited number 
of spectra are loaded based on memory limits, processed, and saved to an HDF5 file until the whole dataset is 
processed. As data sizes increase, it may be become necessary to develop GPU-based and distributed-memory 
CPU- and GPU-based elemental fitting software. 

The higher intensity x-ray beam generated by the APS-U storage ring necessitates the utilization of self-
absorption correction when generating elemental maps. APS researchers and instrument staff are working on 
developing new self-absorption correction algorithms in collaboration with staff at the National Synchrotron 
Light Source II (NSLS-II) at Brookhaven National Laboratory (BNL). These algorithms are being 
implemented and tested in the XRF-Maps software. 
Table 2-15 Summary of XRF microscopy elemental mapping data processing needs and status for the ISN APS-U feature 
beamline. 

Capability Algorithm / Software Requirement Status 
XRF Elemental Map Fitting Algorithms for elemental map fitting Done 

Multi-core shared-memory CPU implementation Done – APS Operations 
Streaming data processing / operate on out-of-
core data 

Done – APS Operations 

Distributed-memory CPU and GPU 
implementation 

To do – If required 

XRF Self-Absorption Correction Self-absorption correction algorithm development In Progress – APS Operations and collaborations 
with NSLS-II 

Self-absorption correction implementation in 
XRF-Maps 

In Progress – APS Operations 

 

Ptychography Reconstruction 

Ptychography has emerged as a powerful technique at synchrotron light sources. It will play a central role in 
answering many emerging scientific questions that the upgraded APS will help solve. Advanced ptychographic 
reconstruction algorithms and software are critical to take advantage of this new and innovative technique. 

Multiple ptychographic reconstruction algorithms are required to achieve reasonable reconstruction quality to 
best analyze ptychography data collected for different domains and of varying sample characteristics. The APS 
has implemented the extended Ptychographic Iterative Engine (ePIE), Difference Map (DM), and iterative 
Least-SQuares solver for generalized Maximum-Likelihood (LSQ-ML) methods. Algorithms to help improve 
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reconstruction quality, such as position and prove variation correction, and affine position regularization, are 
being developed and implemented. 

Due to the computationally complex nature of ptychographic reconstruction algorithms and due to the 
anticipated increase in data rates and sizes in the APS-U Era, distributed high-performance implementations of 
ptychography reconstruction software is required. In 2014, the APS with collaborators in Argonne’s 
Mathematics & Computer Science (MCS) division developed PtychoLib, a distributed-memory GPU 
implementation of the extended Ptychographic Iterative Engine (ePIE) and Difference Map (DM) algorithms. 
PtychoLib is written in C++ and uses MPI and CUDA. The software was shown to scale on up to 256 GPUs on 
the Argonne Leadership Computing Facility’s Cooley GPU cluster. This software has been supported and 
extended since then and has been the main tool used for high-performance ptychography reconstructions at 
APS beamlines. PtychoPy (https://github.com/kyuepublic/ptychopy) was developed as a Python wrapper and 
GUI for PtychoLib. Currently, the APS has consolidated ptychography development into the tike 
(https://github.com/tomography/tike) toolkit. This toolkit is written in Python and uses CuPy. 
Table 2-16 Summary of ptychography reconstruction needs and status for the PtychoProbe APS-U feature beamline. 

Capability Algorithm / Software Requirement Status 
Conventional Reconstruction GPU implementation of extended Ptychographic Iterative 

Engine (ePIE) method 
Done – APS Operations 

GPU implementation of Difference Map (DM) method Done – APS Operations 
GPU implementation of the iterative Least-SQuares solver for 
generalized Maximum-Likelihood (LSQ-ML) method 

Done – APS Operations 

Improved Reconstruction 
Quality 

Position correction Done – APS Operations 
Probe variation correction Done – APS Operations 
Multi-probe retrieval In Progress – APS Operations 
Mini-batches In Progress – APS Operations 
Multi-wavelength In Progress – APS Operations 
Arbitrary fly-scan In Progress – APS Operations 
Multi-slice ptychography In Progress – APS Operations 
Integration with CNN denoising and priors (regularization) In Progress – APS Operations 
Affine position regularization In Progress – APS Operations 

High-Performance 
Implementations 

Scalable distributed-memory GPU implementation of 
extended Ptychographic Iterative Engine (ePIE) method 

Done – APS Operations and ASCR 
funding – PtychoLib 

Scalable distributed-memory GPU implementation of 
Difference Map (DM) method 

Done – APS Operations and ASCR 
funding – PtychoLib 

Scalable distributed-memory GPU implementation of iterative 
least-squares solver for generalized maximum-likelihood 
(LSQ-ML) method 

In Progress – APS Operations 

 

APS-U Era data rates are expected to be so large that traditional algorithms may not be able to keep up with 
acquired data. These data rates are so large, and the scientific problems that APS-U Era capabilities can enable 
are so great, that porting and scaling current models and algorithmic approaches may not realize the full 
promise of next-generation light sources. Using AI techniques, APS researchers have developed an approach 
to improve the performance of ptychographic reconstructions. A deep neural network model is trained to 
predict and reconstruct ptychographic x-ray data. This approach, PytchoNN, can then perform reconstructions 
up to 300 times faster than conventional iterative approaches and uses up to 5 times less data, speeding up both 
data acquisition and data reconstruction (see Figure 2-7). 

Space-Mapping for Diffraction Data 

The APS develops and supports the RSMap3D tool for diffraction space-mapping (see Figure 2-8). This 
software is available as an open-source package (https://github.com/AdvancedPhotonSource/rsMap3D). The 
tool allows users to examine the volume of collected data and select portions on which to apply 
transformations that convert detector pixel locations from diffractometer geometry to reciprocal-space units, 
and then map pixel data onto a 3D reciprocal-space grid. This application uses diffractometer angles, the 
energy of the scan and sample to detector distances to calculate either q-vector component values or HKL 
values. These values are calculated for each detector pixel and scan position. The calculated q/HKL value and 
pixel intensity is then binned in a 3D grid based on the selected q/HKL values. The core routines utilize 
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OpenMP to parallelize operations across multiple cores on a shared-memory CPU. Data too big to fit entirely 
into memory at one time are processed in smaller chunks and reassembled to form the final output volume, 
allowing users to process arbitrarily large input datasets. It will be straightforward to extend this application to 
operate in a distributed-memory CPU environment if needed. These parallel and out-of-core computational 
techniques will be critical to handle larger data rates expected in the APS-U Era. 
Table 2-17 Summary of diffraction space-mapping data processing needs and status for the ISN APS-U feature beamline. 

Capability Algorithm / Software Requirement Status 
RSM for Diffraction 
Data 

Multi-core shared-memory CPU implementation Done – APS Operations in collaboration with DESY 
Operate on out-of-core data Done – APS Operations 
Distributed-memory CPU and GPU implementation To do – If required 

 

2.7.7 Effort, Funding, and Collaborations 
Network infrastructure to the edge of the PtychoProbe APS-U feature beamline will be provided by APS-U 
funding. All other network infrastructure is funded by APS Operations funding as described in 1.2. Facility-
wide data management, workflows, and science portal effort is funded by APS Operations (approximately 2.5 
FTE per year) and the Globus Services team as described in 1.4. Some local computing resources dedicated to 
the PtychoProbe APS-U feature beamline for on-the-fly processing and experiment steering will be provided 
from APS-U funding. Large-scale computing resources are provided by APS Operations funding, Argonne 
Leadership Computing Facility (ALCF) funding, and Argonne Laboratory Computing Resource Center 
(LCRC) funding as described in 1.5. The APS dedicates approximately 1 FTE per year for XRF elemental 
mapping and diffraction space-mapping software development from APS Operations funding. 

The following LDRD funding was awarded to support these efforts: 

• Novel Capabilities for Ultra-fast and Ultra-low-dose 3D Scanning Hard X-ray Microscopy (FY18) 
• Enabling Automatic Learning of Atmospheric Particles through APS-U (FY19) 
• Learning and Differentiating: Using Artificial Intelligence to Image Beyond the X-ray Depth of Focus 

Limit (FY19) 
• Intelligent Ptychography Scan via Diffraction-Based Machine Learning (FY20) 
• AutoPtycho: Autonomous, Sparse-sampled Ptychographic Imaging (FY21) 
• AI Accelerator for 3D X-ray Phase Retrieval with Automatic Differentiation (FY21) 

 
Figure 2-6 Left: uProbeX displaying integrated spectra from a dataset in blue, background subtraction in green, modeled spectra 
in orange, and elemental lines for element S. Right: uProbeX displaying Calcium quantities of an analyzed fish fossil. Elemental 
maps are generated with XRF-Maps. 
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Figure 2-7 Architecture of PtychoNN, a deep convolutional neural network that can predict real-space amplitude and phase from 
input diffraction data alone. 

 
Figure 2-8 Visualization of a dataset from a pixel from a Silicon analyzer crystal processed with RSMap3D. This data shows a 
combination of diffraction (bright spots) and thermal diffuse scattering (broad lines connecting diffraction spots).  This data was 
taken on the High Energy Resolution Inelastic X-Ray Spectrometer (HERIX) at APS Sector 30. 

2.8 X-ray Photon Correlation Spectroscopy (XPCS) APS-U Feature Beamline 
2.8.1 Summary 
The X-ray Photon Correlation Spectroscopy (XPCS) APS-U feature beamline will be dedicated to time-
resolved coherent x-ray scattering experiments for a diverse scientific community; experiments will exploit the 
brilliance of the upgraded source to study fundamental materials structures. The small- and wide-angle 
instruments will probe dynamics in soft and hard matter respectively. 

In the APS-U era, the XPCS APS-U feature beamline will operate in modes that vary between collecting time 
series of area detector frames at very high frame rates (up to 100 kHz) and at moderate frame rates (a few kHz 
to Hz). The XPCS APS-U feature beamline is anticipated to collect up to approximately 26 PB of raw data per 
year, in comparison to approximately 0.1 PB of data collected today at the 8-ID beamline. These data 
generation estimates form the basis for networking infrastructure, controls, data management, and data 
processing planning. Table 2-18summarizes the data rates and total data accumulation for the anticipated 
experimental configuration at the XPCS APS-U feature beamline. 
Table 2-18 Estimated data generation rates at the XPCS APS-U feature beamline. 
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Today XPCS LAMBDA 2M 3.8 500 1.86 18.61 25% 1.31 40 0.1 
APS-U 
Era 

XPCS – Fast LAMBDA 4M 22.88 2,000 44.73 2,235 20% 75 20 3.0 
XPCS – Fast UHSS 4M 30.58 10,000 2,980 2,980 15% 377 20 15.0 
XPCS – Average LAMBDA 4M 22.87 500 11 670 15% 141 20 6.0 
XPCS – Average UHSS 4M 30.52 1,000 30 1,788 20% 50 20 2.0 
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* Raw uncompressed data rate. 
** Based on 1,440 minutes in one day. 
*** Based on 210 days of beam time per fiscal year. 

2.8.2 Network Architecture and Infrastructure 
Network infrastructure needs will be addressed by the facility plan described in 1.2. 

2.8.3 Controls, Data Acquisition, and Detector Integration 
Controls, data acquisition, and detector integration needs will be addressed by the facility plan described in 
1.3. Detailed plans and schedules are described in respective APS-U beamline controls documents, Equipment 
Specification Documents (ESDs), and Instrument Specification Documents (ISDs). 

2.8.4 Data Management, Workflows, and Science Portals 
The APS-U XPCS feature beamline will leverage the data management, workflow, and science portal efforts 
described in 1.4. The APS Data Management System, the facility-wide software and hardware system for 
managing data and workflows, will integrate data collection and processing workflows, manage user 
permissions based on experiment groups, and enable user access to data. Globus tools will provide a science 
portal for viewing and accessing data and automating the re-processing of data after the allotted experiment 
time has ended. For the XPCS APS-U feature beamline, workflows will provide a pipeline to automatically 
transfer data to computing resources for processing, launch processing jobs, and save results for visualization. 
A streaming data pipeline will be developed so that the data is processed in near real-time. 

2.8.5 Computing Infrastructure 
Computing infrastructure needs will be addressed by the facility plan described in 1.5. Some local computing 
resources may be provided for on-the-fly data processing and experiment steering. Computing capacity for 
these data processing tasks and for post-experiment processing and analysis will be provided by computing 
centers, including the Argonne Leadership Computing Facility (ALCF) and Argonne’s Laboratory Computing 
Resource Center (LCRC). The APS Data Management System and Globus tools will be used to seamlessly 
integrate these resources. 

2.8.6 Data Reduction and Analysis 
The main technique used for analyzing XPCS data involves auto-correlating time-resolved signals. Table 2-19 
shows algorithm requirements based on science drivers, along with current algorithm development status. The 
Multi-Tau and Two-Time correlation algorithms are most used when processing data that studies equilibrium 
and non-equilibrium dynamics, respectively. These algorithms are already well developed and in common use. 
Higher-order time correlations are required to study spatial and temporal heterogeneity, intermittent dynamics, 
and avalanches. The study of speckle metrology, nanoscale flow, and velocimetry require the use of spatial-
temporal cross-correlations. Development of these latter two classes of algorithms is underway at the APS and 
with APS Users and collaborators, including collaborators at CAMERA. 
Table 2-19 Summary of algorithm requirements for the XPCS APS-U feature beamline. 

Science Driver Algorithm Requirement Status 
Equilibrium Dynamics Multi-Tau Correlation Done 
Non-Equilibrium Dynamics Two-Time Correlation Done  
Spatial and temporal heterogeneity, 
intermittent dynamics, avalanches 

Higher-Order Time Correlations In Progress – APS Operations, APS User 
group collaborations, and CAMERA 

Speckle metrology, nanoscale flow, and 
velocimetry 

Spatial-Temporal Cross-Correlations In Progress – APS Operations, APS User 
group collaborations, and CAMERA 

 

The APS develops and maintains the high-performance xpcs-eigen auto-correlation software package 
(https://github.com/AdvancedPhotonSource/xpcs-eigen) for processing XPCS data. This tool utilizes multiple 
CPU cores in a shared-memory environment to quickly produce auto-correlations of XPCS data using the 
Multi-Tau and Two-Time algorithms. This software is written in C++ and uses OpenMP for parallelization. A 
Python wrapper for xpcs-eigen, pyxpcs is available (https://github.com/pyxpcs/pyxpcs). This Python wrapper 
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makes it possible to perform more interactive data analysis while still maintaining performance. The 
pyXpcsViewer tool (https://github.com/AdvancedPhotonSource/pyXpcsViewer) helps users visualize and 
analyze correlation results generated from xpcs-eigen (see Figure 2-9). A GPU implementation of the Multi-
Tau algorithm has been developed that shows significant performance improvements over the current CPU 
implementation. 

The current feature sets and performance of xpcs-eigen, pyxpcs, and pyXpcsViewer is adequate for today’s 
needs. However, the estimated increase in overall data that will be generated at the XPCS APS-U feature 
beamline necessitates improvements and advances in software. The APS is planning to develop 
implementations of higher-order time correlation and spatial-temporal cross-correlation algorithms and 
develop higher-performance distributed-memory CPU and GPU software applications. Table 2-20 summarizes 
XPCS software capabilities and current development statuses for the XPCS APS-U feature beamline. 
Table 2-20 Summary XPCS APS-U feature beamline data reduction and processing software capabilities and needs. 

Capability Software Requirement Status 
Multi-Tau Correlation Shared-memory CPU implementation Done – APS Operations 

Distributed-memory CPU implementation To do – APS Operations 
Single GPU implementation Done – APS Operations 
Multiple GPU implementation To do – APS Operations 

Two-Time Correlation Shared-memory CPU implementation Done – APS Operations 
Distributed-memory CPU implementation To do – APS Operations 
Single GPU implementation In progress – APS Operations 
Multiple GPU implementation To do – APS Operations 

Higher-Order Time Correlations CPU implementation To do – APS Operations – pending algorithm 
development 

GPU implementation To do – APS Operations – pending algorithm 
development 

Spatial-Temporal Cross-
Correlations 

CPU implementation To do – APS Operations – pending algorithm 
development 

GPU implementation To do – APS Operations – pending algorithm 
development 

 

2.8.7 Effort, Funding, and Collaborations 
Network infrastructure to the edge of the XPCS APS-U feature beamline will be provided by APS-U funding. 
All other network infrastructure is funded by APS Operations funding as described in 1.2. Facility-wide data 
management, workflows, and science portal effort is funded by APS Operations (approximately 2.5 FTE per 
year) and the Globus Services team as described in 1.4. Some local computing resources dedicated to the 
XPCS APS-U feature beamline for on-the-fly processing and experiment steering will be provided from APS-
U funding. Large-scale computing resources are provided by APS Operations funding, Argonne Leadership 
Computing Facility (ALCF) funding, and Argonne Laboratory Computing Resource Center (LCRC) funding 
as described in 1.5. The APS dedicates approximately 1.0 FTE per year for XPCS related algorithm and 
software development from APS Operations funding. 

CAMERA provides effort in support of XPCS algorithm development. 
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Figure 2-9 Top: g2 plots of the multi-tau correlation results. Users have many options to visualize data. Bottom: Visualization of 
a two-time correlation of a rubber sample. Users can select the region of interest by clicking the mouse. 

2.9 3D Micro and Nano (3DMN) Diffraction APS-U Feature Beamline 
2.9.1 Summary 
The 3D Micro and Nano Diffraction (3DMN) APS-U feature beamline is designed to address a wide range of 
spatially inhomogeneous materials problems at the mesoscopic scale. These problems range over many areas 
of science where previous x-ray diffraction techniques are insufficient due to the short length scale of the 
inhomogeneities in the materials. 3DMN proposes to overcome current difficulties by using the bright MBA 
source to provide small intense x-ray spots (50-200nm) to investigate the important special variations of strain 
and structure that define this wide range of scientifically and technologically important materials. 

In the APS-U era, the 3DMN feature beamline will perform Laue depth reconstruction diffraction scans. 
3DMN will be able to operate in a mode like the current wire or knife-edge scan mode. This should allow 
analysis to work with some adjustments for data volume. 3DMN’s updated detectors will lead to an increase in 
the size of acquired data from 6 megapixels (from 3 detectors) to 10 megapixels per collection point. To 
optimize use of updated beam parameters, it will be necessary to decrease the size of scan steps further 
increasing the data volume. A new more efficient data collection mode is proposed that uses scans with a mask 
in place of a wire. Instead of blocking off one row with a wire in the scattered beam, a mask is used which 
passes only the previously blanked row. This new method allows for processing a larger data volume at each 
point by holding the number of scanned points close to the current wire scan. This will keep data volumes per 
dataset lower but requires the development of a new algorithm to process data. The new mode will allow more 
datasets of equal quality to be collected in the same amount of time as compared to the contemporary wire scan 
method. 

Table 2-21 shows the estimated data generation rates at the 3DMN APS-U feature beamline, and current data 
rates at the 34-ID-E instrument, for comparison. The 3DMN APS-U feature beamline is anticipated to collect 
approximately 2.8 PB of raw compressed data per year, in comparison to approximately 400 TB of data 
collected today at the 34-ID-E instrument. This represents slightly less than a one-order-of-magnitude increase 
in data. Note that in the APS-U era, it is anticipated that the 3DMN instrument will likely use the mask scan 
mode instead of the wire scan mode, assuming sufficient algorithmic developments. Although the overall 
amount of data generated by the two modes is the same in Table 2-21, the mask scan mode estimates represent 
a much larger amount of individual sample scans. These data generation estimates form the basis for 
networking infrastructure, controls, data management, and data processing planning. 
Table 2-21 Data generation rates today at the 34-ID-E Laue diffraction instrument (for comparison) and estimated data 
generation rates at the 3DMN APS-U feature beamline. 
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Today Wire Scan 
 

PE XRD 
1620 AN 8 4 0.0313 500 3.9063 1 3.91 2.08 50.00% 1.32 45.00% 125 

PE XRD 
1620 AN + 2 
x PE XRD 
0820 AN 

12 4 0.0469 500 5.8594 1 5.86 2.08 50.00% 1.98 5.00% 21 

PE XRD 
1620 AN 8 8 0.0625 500 3.9063 1 3.91 1.04 50.00% 2.64 45.00% 249 

PE XRD 
1620 AN + 2 
x PE XRD 
0820 AN 

12 8 0.0938 500 5.8594 1 5.86 1.04 50.00% 3.96 5.00% 42 

APS-U 
Era 

Wire Scan 
– Fast+ 

Pilatus 6M 24 100 2.3438 1000 23.4375 3.5 6.7 0.17 50.00% 28.25 20.00% 1,187 
Pilatus 6M + 
2 x 2 MP 
Detectors 

40 100 3.9063 1000 39.0625 3.5 11.16 0.17 50.00% 47.08 5.00% 494 

Wire Scan 
– Average+ 

Pilatus 6M 24 25 0.5860 1000 23.4375 3.5 6.7 0.67 50.00% 7.06 70.00% 1,038 
Pilatus 6M + 
2 x 2 MP 
Detectors 

40 25 0.9766 1000 39.0625 3.5 11.16 0.67 50.00% 11.77 5.00% 124 

Mask Scan 
– Fast+ 

Pilatus 6M 24 100 2.3438 200 4.6875 3.5 1.34 0.03 50.00% 28.25 20.00% 1,187 
Pilatus 6M + 
2 x 2 MP 
Detectors 

40 100 3.9063 200 7.8125 3.5 2.23 0.03 50.00% 47.08 5.00% 494 

Mask Scan 
– Average+ 

Pilatus 6M 24 25 0.5859 200 4.6875 3.5 1.34 0.13 50.00% 7.06 70.00% 1,038 
Pilatus 6M + 
2 x 2 MP 
Detectors 

40 25 0.9766 200 7.8125 3.5 2.23 0.13 50.00% 11.77 5.00% 124 

* A compression factor of 1.0 represents no compression. 
** Based on 1,440 minutes in one day. 
*** Based on 210 days of beam time per fiscal year. 
+ It is anticipated that the 3DMN instrument will likely use the mask scan mode instead of the wire scan mode, assuming sufficient algorithmic 
developments. Although the overall amount of data generated by the two modes is the same, the mask scan mode estimates represent a much 
larger amount of individual sample scans. 

2.9.2 Network Architecture and Infrastructure 
Network infrastructure needs will be addressed by the facility plan described in 1.2. 

2.9.3 Controls, Data Acquisition, and Detector Integration 
Controls, data acquisition, and detector integration needs will be addressed by the facility plan described in 
1.3. Detailed plans and schedules are described in respective APS-U beamline controls documents, Equipment 
Specification Documents (ESDs), and Instrument Specification Documents (ISDs). 

2.9.4 Data Management, Workflows, and Science Portals 
The APS-U 3DMN feature beamline will leverage the data management, workflow, and science portal efforts 
described in 1.4. The APS Data Management System, the facility-wide software and hardware system for 
managing data and workflows, will integrate data collection and processing workflows, manage user 
permissions based on experiment groups, and enable user access to data. Globus tools will provide a science 
portal for viewing and accessing data and automating the re-processing of data after the allotted experiment 
time has ended. For the 3DMN APS-U feature beamline, workflows will provide a pipeline to automatically 
run the wire or mask scan Laue depth reconstruction processing software and view results. 

2.9.5 Computing Infrastructure 
Computing infrastructure needs will be addressed by the facility plan described in 1.5. Some local computing 
resources will be provided for on-the-fly data processing and experiment steering. Computing capacity for 
larger data processing tasks and for post-experiment processing and analysis will be provided by computing 
centers, including the Argonne Leadership Computing Facility (ALCF) and Argonne’s Laboratory Computing 
Resource Center (LCRC). The APS Data Management System and Globus tools will be used to seamlessly 
integrate these resources. 
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2.9.6 Data Reduction and Analysis 
Processing Laue micro- and nano-diffraction microscopy data generally consists of three main steps: peak 
searching and indexing, depth reconstruction, and q-space histogram generation. Peak searching and indexing 
finds all the peaks and indexes them to get the crystal orientation of a Laue pattern. The depth reconstruction 
process generates new images corresponding to the scattering observed from a single depth. With energy 
scans, a 1D or 3D histogram of intensity in q-space may be generated. 

The APS develops and maintains the LaueGo software for Laue depth reconstructions of wire scan mode data. 
The software is available as an open-source package (https://github.com/34IDE/LaueGo). It performs peak 
searching and indexing, depth reconstruction, and q-space histogram generation for wire scan data. Versions 
are available in both Igor and C. A CUDA GPU implementation is available to improve performance on GPU 
equipped workstations. 

The current feature set and performance of LaueGo and the corresponding GPU implementation is adequate 
for today’s needs. However, the estimated increase in overall data that will be generated at the 3DMN APS-U 
feature beamline necessitates improvements and advances in software and algorithms. 

The APS is currently developing a new mask scan algorithm for the anticipated mask scan mode that will be 
used in the APS-U era. Along with higher-performance implementations of the contemporary wire scan mode, 
high-performance implementations of the mask scan algorithm are planned. Table 2-22 summarizes Laue 
depth reconstruction data reduction needs, approaches, and status for the 3DMN APS-U feature beamline. 
Table 2-22 Summary of Laue depth reconstruction data reduction needs, approaches, and status for the 3DMN APS-U feature 
beamline. 

Capability Algorithm / Software Requirement Status 
Reconstruct Laue microscopy 
wire scan data 

Algorithms for Laue microscopy wire scan 
reconstruction 

Done – APS Operations 

CPU and GPU software for Laue microscopy 
wire scan reconstructions 

Done – APS Operations 

Parallel distributed-memory CPU and GPU 
software for APS-U era wire scan data 

To do – APS Operations 

Reconstruct Laue microscopy 
mask scan data 

Algorithms for Laue microscopy mask scan 
reconstruction 

In Progress – LDRD 

CPU and GPU software for Laue microscopy 
wire scan reconstructions 

To do – If required – APS Operations 

Parallel distributed-memory CPU and GPU 
software for APS-U era mask scan data 

To do – If required – APS Operations 

 

2.9.7 Effort, Funding, and Collaborations 
Network infrastructure to the edge of the 3DMN APS-U feature beamline will be provided by APS-U funding. 
All other network infrastructure is funded by APS Operations funding as described in 1.2. Facility-wide data 
management, workflows, and science portal effort is funded by APS Operations (approximately 2.5 FTE per 
year) and the Globus Services team as described in 1.4. Some local computing resources dedicated to the 
3DMN APS-U feature beamline for on-the-fly processing and experiment steering will be provided from APS-
U funding. Large-scale computing resources are provided by APS Operations funding, Argonne Leadership 
Computing Facility (ALCF) funding, and Argonne Laboratory Computing Resource Center (LCRC) funding 
as described in 1.5. A postdoc is dedicated to development of the new mask scan algorithm. The APS will 
dedicate appropriate software development effort from APS Operations funding. 

The following LDRD funding was awarded to support this effort: 

• Coded Apertures for Depth Resolved Diffraction (FY20) 
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ARGONNE NATIONAL LABORATORY 
¨ U.S. Department of Energy research facility 

¨ Operated by the University of Chicago 

¨ Midwest’s largest federally funded R&D facility 

¨ Located in Lemont, IL, about 25 miles (40 km) 
southwest of Chicago, IL (USA) 

¨ Conducts basic and applied research.              
in dozens of fields 

¨ Unique suite of leading-edge and rare scientific 
user facilities 

 


